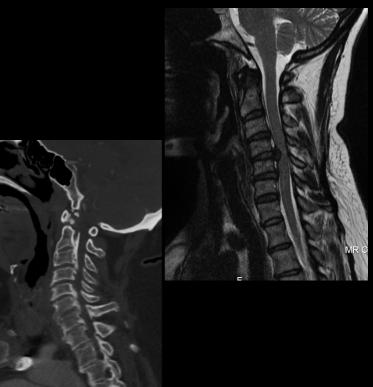
Decision Making in Cervical Myelopathy: Anterior vs. Posterior Approaches


Han Jo Kim MD Associate Professor Spine Fellowship Director Hospital for Special Surgery

Disclosures

- Consultant/Royalty K2M, ZimmerBiomet
- Board Membership AO SPINE
- Research Support ISSGF

Cervical Spondylotic Myelopathy

- Compression of Spinal Cord due to
 - Osteophytes
 - Disc
 - Ligamentum Hypertrophy
- Can have concurrent
 - Congenital Stenosis
 - OPLL

Multiple Approaches to Treatment

- Anterior
 - ACDF
 - ACCF (Corpectomy)
- Posterior
 - Laminoplasty
 - Laminectomy and Fusion

Anterior Approach

- Advantages
 - Direct Removal of Compressive Pathology
 - Correction of Deformity
 - Uncinate decompression
- Disadvantages
 - Higher complication rates
 - Dysphagia, pseudarthrosis, dysphonia
 - Range of Motion

Posterior Approach

- No Fusion with Laminoplasty
 - Maintained ROM
 - Lower Healthcare Costs
- Lami + Fusion
 - Good outcomes
 - Equivocal Neurologic Recovery?
 - No Dysphagia
 - Good Fusion Rates

Cervical Spine

Anterior Versus Posterior Surgical Approaches to Treat Cervical Spondylotic Myelopathy

Outcomes of the Prospective Multicenter AOSpine North America CSM Study in 264 Patients

Michael G. Fehlings, MD, PhD,* Sean Barry, MD,* Branko Kopjar, MD,† Sangwook Tim Yoon, MD,‡ Paul Arnold, MD,§ Eric M. Massicotte, MD,* Alexander Vaccaro, MD, PhD,¶ Darrel S. Brodke, MD,∥ Christopher Shaffrey, MD,** Justin S. Smith, MD,** Eric Woodard, MD,†† Robert J. Banco, MD,‡‡ Jens Chapman, MD,† Michael Janssen, DO,§§ Christopher Bono, MD,¶¶ Rick Sasso, MD,|||| Mark Dekutoski, MD,*** and Ziya L. Gokaslan, MD†††

- 264 patients, 12 month f/u
- Complication rate Similar
 - 11.8% (Anterior) vs. 17.9% (Posterior)
- No Differences in C5 Palsy

An MRI-Based Propensity-Score-Matched Analysis Using Data from the Prospective Multicenter AOSpine CSM North America and International Studies

So Kato, MD, Aria Nouri, MD, MSc, Dongjin Wu, MD, PhD, Satoshi Nori, MD, PhD, Lindsay Tetreault, PhD, and Michael G. Fehlings, MD, PhD, FRCSC

- 80 matched 1:1 pairs in 757 patients
 - No dysphagia/dysphonia in Posterior Group
 - 10% in Anterior Group
 - Same Complication Rate (16% vs. 11%, p =0.48)
 - Same LOS (11.6 vs. 8.9, p=0.86)
 - Same Outcomes (mJOA, NDI, Recovery Rate)

A Comparison of the Anterior Approach and the Posterior Approach in Treating Multilevel Cervical Myelopathy

A Meta-Analysis

Zihao Chen, MD, Bin Liu, MD, Jianwen Dong, MD, Feng Feng, MD, Ruiqiang Chen, MD, Peigen Xie, MD, and Limin Rong, MD

Clin Spine Surg • Volume 30, Number 2, March 2017

CSI

www.clinicalspinesurgery.com | 65

Copyright © 2017 Wolters Kluwer Health, Inc. All rights reserved.

									Mean Difference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl		
1.3.1 CSM											
Hirai 2011	59.9	27.4	39	49.5	25.8	47	5.9%	10.40 [-0.93, 21.73]	↓_ ∎		
Lin 2013	57.7	10.4	27	49.3	11.2	24	7.0%	8.40 [2.44, 14.36]	_ 		
Liu 2011	59.8	23.4	25	59.5	29.4	27	5.2%	0.30 [-14.09, 14.69]			
Shibuya 2010	55.5	25.3	34	61.4	21.2	49	6.1%	-5.90 [-16.27, 4.47]			
Wang 2006	60.8	20.7	27	57.1	16.4	15	5.9%	3.70 [-7.69, 15.09]	_		
Wen 2012	37.9	33.8	102	30	29	59	6.2%	7.90 [-1.99, 17.79]	+ 		
Yonenobu 1992	55.3	30.2	41	44.9	26.2	42	5.7%	10.40 [-1.78, 22.58]	<u> </u>		
Subtotal (95% CI)			295			263	41.9%	5.62 [1.30, 9.93]	◆		
Heterogeneity: Tau ² =	7.33; C	hi² = 7.	66, df :	= 6 (P =	0.26);	² = 22	%		-		
Test for overall effect:	Z = 2.55	5 (P = 0	0.01)								
1.3.2 OPLL											
Chen 2011	64.2	15.2	22	25.1	8.5	25	6.8%	39.10 [31.93, 46.27]			
lwasaki 2007	51		27	55	30.3	66	5.9%	-4.00 [-15.34, 7.34]			
Jain 2005		20.2	14	58.9		13	5.4%	4.40 [-9.09, 17.89]			
Lin 2012		10.4	26	54.8	9.7	30	7.1%	3.80 [-1.49, 9.09]			
Masaki 2007		27.3	19	52.5	30	40	4.9%	15.90 [0.50, 31.30]			
Tani 2002	58	24	14	13	39	12	3.1%	45.00 [19.60, 70.40]			
Subtotal (95% CI)	00		122	10	00	186	33.2%				
Heterogeneity: Tau ² =	380.70	Chi ² =	78.69	df = 5 (P < 0						
Test for overall effect:				u		,					
1.3.3 mixed CM											
Cao 2012	61.71	11.4	55	60.93	15.2	39	7.1%	0.78 [-4.86, 6.42]	_ _		
Liu 2012		21.3	71		22.5	45	6.6%	8.90 [0.67, 17.13]	_		
Qian 2014		17.4	43		19.2	156	7.0%	6.50 [0.49, 12.51]	⊢_		
Seng 2013		42.8	64		58.8	52	4.2%	-5.90 [-25.01, 13.21]	_		
Subtotal (95% CI)			233			292	24.8%	4.25 [-0.37, 8.87]	•		
Heterogeneity: Tau ² =	6.66; Cl	hi² = 4.	30, df =	= 3 (P =	0.23):	l² = 30	%		+		
Test for overall effect:	Z = 1.80) (P = 0	0.07)	,	,.						
Total (95% CI)			650			741	100.0%	8.11 [2.33, 13.90]			
Heterogeneity: Tau ² =	114.83	Chi² =		7 df = 1	6 (P <				→		
Test for overall effect:				, ar si	- (r	0.0000	.,,		-50 -25 0 25 50		
Test for subgroup diff		· · · ·		tf = 2 (F	= 0.3	8) ² = 1	0%		Favours Posterior Favours Anterior		
reactor subgroup unit	orences.	011 -	1.01,0	a – ∞ (r	- 0.5	0,1 -1	<i>a 1</i> 0				

A Comparison of the Anterior Approach and the Posterior Approach in Treating Multilevel Cervical Myelopathy

A Meta-Analysis

Zihao Chen, MD, Bin Liu, MD, Jianwen Dong, MD, Feng Feng, MD, Ruiqiang Chen, MD, Peigen Xie, MD, and Limin Rong, MD

Clin Spine Surg • Volume 30, Number 2, March 2017

OPLL

www.clinicalspinesurgery.com | 65

Copyright © 2017 Wolters Kluwer Health, Inc. All rights reserved.

	~							ence	Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% C	I IV, Random, 95% CI	
1.3.1 CSM										
Hirai 2011	59.9	27.4	39	49.5	25.8	47	5.9%	10.40 [-0.93, 21.73]		
Lin 2013	57.7	10.4	27	49.3	11.2	24	7.0%	8.40 [2.44, 14.36]		
Liu 2011	59.8	23.4	25	59.5	29.4	27	5.2%	0.30 [-14.09, 14.69]		
Shibuya 2010	55.5	25.3	34	61.4	21.2	49	6.1%	-5.90 [-16.27, 4.47]	_ _	
Wang 2006	60.8	20.7	27	57.1	16.4	15	5.9%	3.70 [-7.69, 15.09]		
Wen 2012	37.9	33.8	102	30	29	59	6.2%	7.90 [-1.99, 17.79]		
Yonenobu 1992	55.3	30.2	41	44.9	26.2	42	5.7%	10.40 [-1.78, 22.58]		
Subtotal (95% CI)			295			263	41.9%	5.62 [1.30, 9.93]	◆	
Heterogeneity: Tau ² =	7.33; CI	hi² = 7.	66, df =	= 6 (P =	0.26);	² = 22	%			
Test for overall effect:	Z = 2.55	5 (P = 0	0.01)							
1.3.2 OPLL										
Chen 2011	64.2	15.2	22	25.1	8.5	25	6.8%	39.10 [31.93, 46.27]		
lwasaki 2007	51		27	55		66	5.9%	-4.00 [-15.34, 7.34]		
Jain 2005		20.2	14	58.9		13	5.4%	4.40 [-9.09, 17.89]		
Lin 2012	58.6	10.4	26	54.8	9.7	30	7.1%	3.80 [-1.49, 9.09]		
Masaki 2007	68.4	27.3	19	52.5	30	40	4.9%	15.90 [0.50, 31.30]		
Tani 2002	58	24	14	13	39	12	3.1%	45.00 [19.60, 70.40]		
Subtotal (95% CI)			122			186	33.2%			
Heterogeneity: Tau ² =	380.70;	Chi ² =	78.69.	df = 5 (P < 0.	00001);	$ ^2 = 94\%$			
Test for overall effect:	Z = 1.93	8 (P = 0	0.05)			,				
1.3.3 mixed CM										
Cao 2012	61.71	11.4	55	60.93	15.2	39	7.1%	0.78 [-4.86, 6.42]		
Liu 2012	77	21.3	71	68.1	22.5	45	6.6%	8.90 [0.67, 17.13]		
Qian 2014	33.9	17.4	43	27.4	19.2	156	7.0%	6.50 [0.49, 12.51]		
Seng 2013	31.8	42.8	64	37.7	58.8	52	4.2%	-5.90 [-25.01, 13.21]		
Subtotal (95% CI)			233			292	24.8%	4.25 [-0.37, 8.87]	◆	
Heterogeneity: Tau ² =	6.66; CI	hi² = 4.	30, df =	= 3 (P =	0.23);	$l^2 = 30^{\circ}$	%		·	
Test for overall effect:	Z = 1.80) (P = 0	0.07)		,,					
Total (95% CI)			650			741	100.0%	8.11 [2.33, 13.90]	•	
Heterogeneity: Tau ² =	114.83:	Chi ² =	105.87	7. df = 1	6 (P <				+ + + + + + +	
					· /·		.,,		-50 -25 0 25 50	
Test for overall effect:	Z = 2.75	5(P = 0	0.006)						-50 -25 0 25 50	

A Comparison of the Anterior Approach and the Posterior Approach in Treating Multilevel Cervical Myelopathy

A Meta-Analysis

Zihao Chen, MD, Bin Liu, MD, Jianwen Dong, MD, Feng Feng, MD, Ruiqiang Chen, MD, Peigen Xie, MD, and Limin Rong, MD

Clin Spine Surg • Volume 30, Number 2, March 2017

MIXED

www.clinicalspinesurgery.com | 65

Copyright © 2017 Wolters Kluwer Health, Inc. All rights reserved.

Study or Subgroup	Mean	en		Maan	en	Tetal	Walaht	IV, Random, 95% CI	Mean Difference IV, Random, 95% Cl
, ,	mean	30	Total	mean	30	Total	weight	IV, Random, 95% CI	IV, Kandom, 95% CI
.3.1 CSM									
lirai 2011	59.9	27.4	39	49.5	25.8	47	5.9%	10.40 [-0.93, 21.73]	
in 2013	57.7	10.4	27	49.3	11.2	24	7.0%	8.40 [2.44, 14.36]	
iu 2011	59.8	23.4	25	59.5	29.4	27	5.2%	0.30 [-14.09, 14.69]	
Shibuya 2010	55.5	25.3	34	61.4	21.2	49	6.1%	-5.90 [-16.27, 4.47]	
Vang 2006	60.8	20.7	27	57.1	16.4	15	5.9%	3.70 [-7.69, 15.09]	_
Ven 2012	37.9	33.8	102	30	29	59	6.2%	7.90 [-1.99, 17.79]	+
onenobu 1992	55.3	30.2	41	44.9	26.2	42	5.7%	10.40 [-1.78, 22.58]	+
Subtotal (95% CI)			295			263	41.9%	5.62 [1.30, 9.93]	◆
+eterogeneity: Tau ² =	7.33; Ch	ni² = 7.	66, df =	= 6 (P =	0.26);	2 = 22	%		
est for overall effect:	Z = 2.55	; (P = 0	0.01)						
.3.2 OPLL									
Chen 2011	64.2	15.2	22	25.1	8.5	25	6.8%	39.10 [31.93, 46.27]	
wasaki 2007	51	23	27	55	30.3	66	5.9%	-4.00 [-15.34, 7.34]	
ain 2005		20.2	14		15.4	13	5.4%	4.40 [-9.09, 17.89]	
in 2012		10.4	26		9.7	30	7.1%	3.80 [-1.49, 9.09]	
Masaki 2007		27.3	19	52.5	30	40	4.9%	15.90 [0.50, 31.30]	
ani 2002	58	24	14	13	39	12	3.1%	45.00 [19.60, 70.40]	
Subtotal (95% CI)	00	24	122	15	00	186	33.2%		
eterogeneity: Tau ² =	380 70-	Chi ² =		df = 5 (P < 0			. , .	
est for overall effect:				ui - 0 (00001),	1 - 3478		
			,						
.3.3 mixed CM									
Cao 2012	61.71	11.4	55	60.93	15.2	39	7.1%	0.78 [-4.86, 6.42]	_ _
iu 2012.	77	21.3	71	68.1	22.5	45	6.6%	8.90 [0.67, 17.13]	
Qian 2014	33.9	17.4	43	27.4	19.2	156	7.0%	6.50 [0.49, 12.51]	
Seng 2013	31.8	42.8	64	37.7	58.8	52	4.2%	-5.90 [-25.01, 13.21]	
Subtotal (95% CI)			233			292	24.8%	4.25 [-0.37, 8.87]	◆
	6.66; Cł	ni² = 4.	30, df =	= 3 (P =	0.23);	$ ^2 = 30$	%		
eterogeneity: Tau ² =		P = 0	0.07)						
leterogeneity: Tau ² = est for overall effect:	Z = 1.80	(h - t							
est for overall effect:	Z = 1.80	, , – ,	650			741	100.0%	8.11 [2.33, 13 90]	
est for overall effect: fotal (95% CI)			650	7 df = 1	6 (D -		100.0%	8.11 [2.33, 13.90]	▲
est for overall effect:	114.83;	Chi² =	105.87	7, df = 1	6 (P <				-50 -25 0 25 50

A Comparison of the Anterior Approach and the Posterior Approach in Treating Multilevel Cervical Myelopathy

A Meta-Analysis

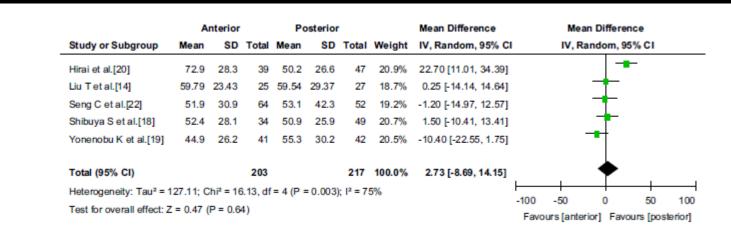
Zihao Chen, MD, Bin Liu, MD, Jianwen Dong, MD, Feng Feng, MD, Ruiqiang Chen, MD, Peigen Xie, MD, and Limin Rong, MD

Clin Spine Surg • Volume 30, Number 2, March 2017

www.clinicalspinesurgery.com | 65

Copyright © 2017 Wolters Kluwer Health, Inc. All rights reserved.

Study or Subgroup	Mean	en.		Mean	en.		Weight	IV, Random, 95% CI	Mean Difference IV, Random, 95% Cl
, ,	mean	30	Total	Medil	30	Total	weight	IV, Kandoni, 55% Ci	IV, Randolli, 35% CI
1.3.1 CSM									
Hirai 2011		27.4	39		25.8	47	5.9%	10.40 [-0.93, 21.73]	
Lin 2013		10.4	27		11.2	24	7.0%	8.40 [2.44, 14.36]	_ _
Liu 2011		23.4	25		29.4	27	5.2%	0.30 [-14.09, 14.69]	
Shibuya 2010	55.5	25.3	34	61.4	21.2	49	6.1%	-5.90 [-16.27, 4.47]	
Wang 2006	60.8	20.7	27	57.1	16.4	15	5.9%	3.70 [-7.69, 15.09]	
Wen 2012	37.9	33.8	102	30	29	59	6.2%	7.90 [-1.99, 17.79]	+
Yonenobu 1992	55.3	30.2	41	44.9	26.2	42	5.7%	10.40 [-1.78, 22.58]	
Subtotal (95% CI)			295			263	41.9%	5.62 [1.30, 9.93]	•
Heterogeneity: Tau ² =	= 7.33; Cl	hi² = 7.	.66, df =	= 6 (P =	0.26);	² = 22	%		
Test for overall effect:	Z = 2.55	5 (P = 0	0.01)						
1.3.2 OPLL									
Chen 2011	64.2	15.2	22	25.1	8.5	25	6.8%	39.10 [31.93, 46.27]	
wasaki 2007	51	23	27	55	30.3	66	5.9%	-4.00 [-15.34, 7.34]	_
Jain 2005	63.3	20.2	14	58.9	15.4	13	5.4%	4.40 [-9.09, 17.89]	_
Lin 2012	58.6	10.4	26	54.8	9.7	30	7.1%	3.80 [-1.49, 9.09]	
Masaki 2007	68.4	27.3	19	52.5	30	40	4.9%	15.90 [0.50, 31.30]	
Tani 2002	58	24	14	13	39	12	3.1%	45.00 [19.60, 70.40]	· · · · · · · · · · · · · · · · · · ·
Subtotal (95% CI)			122			186	33.2%	16.32 [-0.28, 32.91]	
Heterogeneity: Tau ² =	380.70;	Chi ² =	78.69.	df = 5 (P < 0.	00001)	; ² = 94%		
Test for overall effect:	Z = 1.93	8 (P = 0	0.05)			,			
1.3.3 mixed CM									
Cao 2012	61.71	11.4	55	60.93	15.2	39	7.1%	0.78 [-4.86, 6.42]	
Liu 2012		21.3	71		22.5	45	6.6%	8.90 [0.67, 17.13]	
Qian 2014		17.4	43		19.2	156	7.0%	6.50 [0.49, 12.51]	
Seng 2013		42.8	64		58.8	52	4.2%	-5.90 [-25.01, 13.21]	
Subtotal (95% CI)	0110	12.0	233	07.0	00.0	292		4.25 [-0.37, 8.87]	· •
Heterogeneity: Tau ² =	6 66 [.] CI	$hi^2 = 4$		3 (P =	0.23)				•
Test for overall effect:				5,, -	0.20),	, - 50	14		
reactor overall effect.	1.00	(F 24)	0.017						
Total (95% CI)			650				100.0%	8.11 [2.33, 13.90]	◆
Heterogeneity: Tau ² =	= 114.83;	Chi² =	105.87	7, df = 1	6 (P <	0.0000	01); l² = 85	5%	
Test for overall effect:	Z = 2.75	5 (P = 0	0.006)						-50 -25 0 25
Test for subgroup diff	erences:	Chi2 =	1.91, d	ff = 2 (P	= 0.3	8), ² =	0%		Favours Posterior Favours Anterior


ANTERIOR Better For Neurologic Recovery

ORIGINAL ARTICLE

Comparison of anterior approach versus posterior approach for the treatment of multilevel cervical spondylotic myelopathy

Jiaquan Luo¹ · Kai Cao² · Sheng Huang¹ · Liangping Li¹ · Ting Yu¹ · Cong Cao¹ · Rui Zhong¹ · Ming Gong¹ · Zhiyu Zhou¹ · Xuenong Zou¹

Same Neurologic Outcomes

Considerations

- Cervical Spine Sagittal Alignment
- Location of Pathology
- Number of Levels
- Instability
- Osteoporosis
- Neck pain
- Patient History (prior surgery)

Cervical Sagittal Alignment

- No Cervical Lordosis -or- >10 degrees of Kyphosis
- Anterior Approach Preferred

NO LAMINOPLASTY or LAMINECTOMY ALONE

Cervical spondylotic myelopathy associated with kyphosis or sagittal sigmoid alignment: outcome after anterior or posterior decompression

Clinical article

*Kenzo Uchida, M.D., Ph.D., Hideaki Nakajima, M.D., Ph.D., Ryuichiro Sato, M.D., Ph.D., Takafumi Yayama, M.D., Ph.D., Erisa S. Mwaka, M.D., M.Med., Shigeru Kobayashi, M.D., Ph.D., and Hisatoshi Baba, M.D., Ph.D.

Department of Orthopaedics and Rehabilitation Medicine, Fukui University Faculty of Medical Sciences, Eiheiji, Fukui, Japan

Eur Spine J (2017) 26:104–112 DOI 10.1007/s00586-016-4717-8

ORIGINAL ARTICLE

Impact of the surgical treatment for degenerative cervical myelopathy on the preoperative cervical sagittal balance: a review of prospective comparative cohort between anterior decompression with fusion and laminoplasty

Kenichiro Sakai¹©• Toshitaka Yoshii²• Takashi Hirai²• Yoshiyasu Arai¹• Kenichi Shinomiya³• Atsushi Okawa²

Location of Pathology

- Anterior Compression
 - OPLL
 - Hill Shaped Lesions
- Posterior Compression
 - Ligamentous buckling

Number of Levels

- 3 or more level ACDF → Pseudarthrosis Risk
- Consideration for posterior approach

J Neurosurg Spine 6:298-303, 2007

Anterior approaches to fusion of the cervical spine: a metaanalysis of fusion rates

JUSTIN F. FRASER, M.D., AND ROGER HÄRTL, M.D.

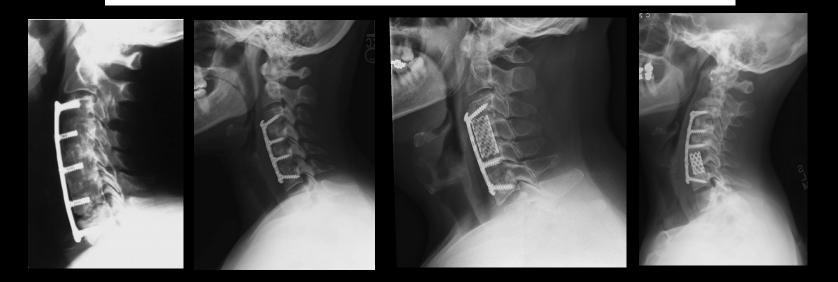
Department of Neurological Surgery, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, New York

> SPINE Volume 35, Number 5, pp 537–543 ©2010, Lippincott Williams & Wilkins

Systematic Review of Cohort Studies Comparing Surgical Treatments for Cervical Spondylotic Myelopathy

Mary R. A. Cunningham, MD,* Stuart Hershman, MD,† and John Bendo, MD†

Pseudarthrosis


• 47% with non-union of at least 1 Level

SPINE Volume 25, Number 16, pp 2040–2046 ©2000, Lippincott Williams & Wilkins, Inc.

Three- and Four-Level Anterior Cervical Discectomy and Fusion With Plate Fixation

A Prospective Study

Michael J. Bolesta, MD,* Glenn R. Rechtine, II, MD,* and Ann Marie Chrin, ARNP†

Instability

- Spondylolisthesis \neq Instability
- >4mm motion in Flex/Ext

Eur Spine J (2010) 19:720–725 DOI 10.1007/s00586-010-1338-5

ORIGINAL ARTICLE

Degenerative spondylolisthesis does not influence surgical results of laminoplasty in elderly cervical spondylotic myelopathy patients

Hideki Shigematsu

Laminoplasty still successful in Spondylolisthesis (3.1mm +/- 0.6)

Osteoporosis

- Difficulty with Screw Purchase
- Excessive Graft Settling

SPINE Volume 31, Number 17, pp 1911–1915 ©2006, Lippincott Williams & Wilkins, Inc.

Settling of Fibula Strut Grafts Following Multilevel Anterior Cervical Corpectomy

A Radiographic Evaluation

Steven S. Hughes, MD,* Timothy Pringle, MD,† Frank Phillips, MD,‡ and Sanford Emery, MD, MBA§

Avoid multilevel anterior alone, prefer Laminoplasty or Combined Approaches

Consideration for Neck Pain

SPINE Volume 21, Number 17, pp 1969-1973 ©1996, Lippincott-Raven Publishers

Neck and Shoulder Pain After Laminoplasty A Noticeable Complication

Noboru Hosono, MD,* Kazuo Yonenobu, MD, PhD,† and Keiro Ono, MD, PhD‡

SPINE 1996 – Hosono

25% neck pain (n=72) 0% in Anterior (n=25)

Concern for Neck Pain Old Techniques?

Axial Symptoms After Cervical Laminoplasty With C3 Laminectomy Compared With Conventional C3–C7 Laminoplasty

A Modified Laminoplasty Preserving the Semispinalis Cervicis Inserted into Axis

Kazunari Takeuchi, MD,* Toru Yokoyama, MD,* Shuichi Aburakawa, MD,* Akira Saito, MD,* Takuya Numasawa, MD,* Tetsuya Iwasaki, MD,* Taito Itabashi, MD,* Akihiro Okada, MD,* Junji Ito, MD,† Kazumasa Ueyama, MD,‡ and Satoshi Toh, MD*

Eur Spine J (2007) 16:1417–1422 DOI 10.1007/s00586-007-0352-8

ORIGINAL ARTICLE

Importance of preserving the C7 spinous process and attached nuchal ligament in French-door laminoplasty to reduce postoperative axial symptoms

Tatsuto Takeuchi · Yasuhiro Shono

SPINE 2005 Takeuchi et al.

50% →17% with worsened neck pain after surgery

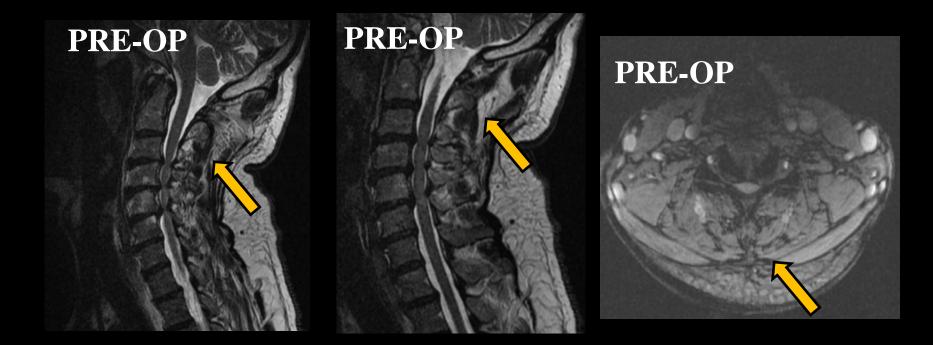
Euro Spine J 2007 Takeuchi et al.

Preservation of C7 Muscle attachments, improved neck pain at 1 and 2 yr

Concern for Neck Pain Old Techniques?

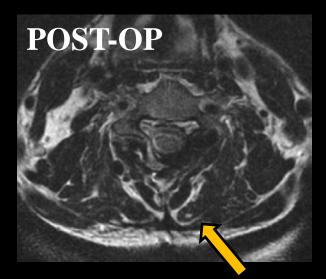
SPINE Volume 32, Number 26, pp 2985–2988 ©2007, Lippincott Williams & Wilkins, Inc.

The Source of Axial Pain After Cervical Laminoplasty-C7 Is More Crucial Than Deep Extensor Muscles

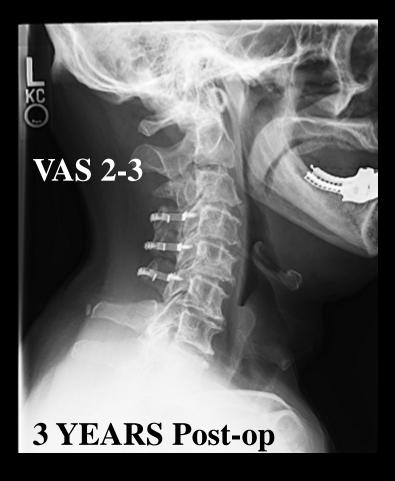

Noboru Hosono, MD, PhD,* Hironobu Sakaura, MD, PhD,† Yoshihiro Mukai, MD, PhD,* and Hideki Yoshikawa, MD, PhD†

SPINE 2007 Hosono et al. 49%→15%with C7 preservation

Eur Spine J (2006) 15: 1375–1379 DOI 10.1007/s00586-006-0089-9


ORIGINAL ARTICLE

N. Hosono H. Sakaura Y. Mukai R. Fujii H. Yoshikawa C3-6 laminoplasty takes over C3-7 laminoplasty with significantly lower incidence of axial neck pain Euro Spine J 2006 Hosono et al. C3-6 better than C3-7 same Neurologic Improvements



3 YEARS POST-OP

No effect on Neck Pain

Systematic Review

Neck Pain Following Cervical Laminoplasty: Does Preservation of the C2 Muscle Attachments and/or C7 Matter?

K. Daniel Riew¹ Annie L. Raich³ Joseph R. Dettori³ John G. Heller²

Global Spine Journal

Original Article 17

Neck Pain following Laminoplasty

Addisu Mesfin¹ Moon-Soo Park² Chaiwat Piyaskulkaew² Tapanut Chuntarapas² Kwang Sup Song² Han Jo Kim² K. Daniel Riew²

¹Department of Orthopaedics, University of Rochester, Rochester, New York, United States

²Department of Orthopaedics, Washington University in Saint Louis, Saint Louis, Missouri, United States Address for correspondence Addisu Mesfin, MD, Assistant Professor of Orthopaedics and Cancer Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14620, United States (e-mail: addisu_mesfin@urmc.rochester.edu).

Global Spine J 2015;5:17-22.

Neck Pain following Laminoplasty

Addisu Mesfin¹ Moon-Soo Park² Chaiwat Piyaskulkaew² Tapanut Chuntarapas² Kwang Sup Song² Han Jo Kim² K. Daniel Riew²

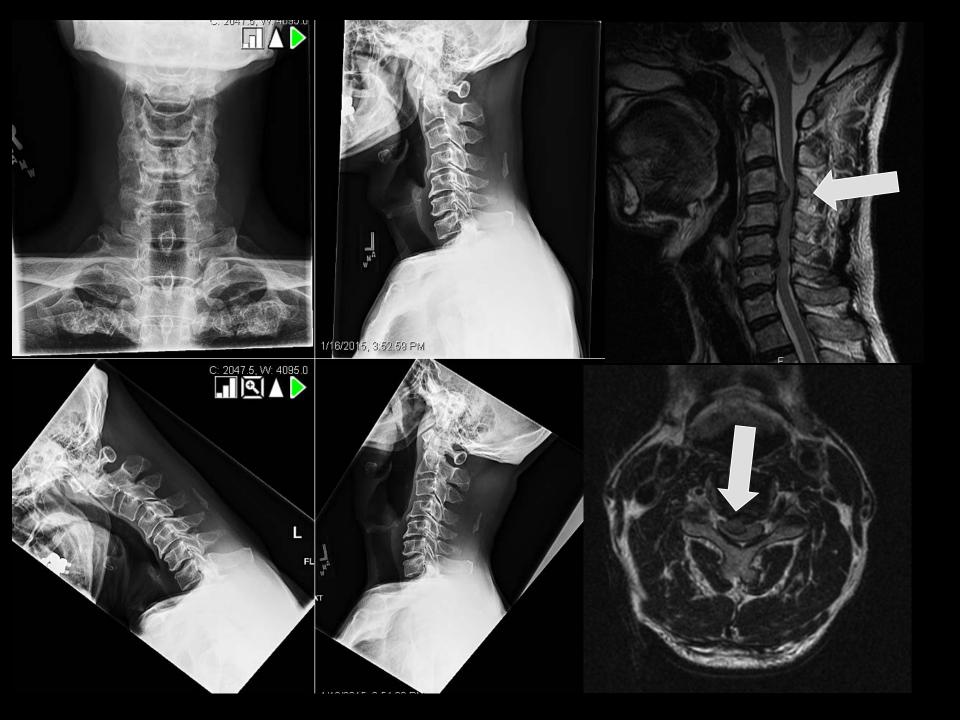
¹ Department of Orthopaedics, University of Rochester, Rochester, New York, United States

² Department of Orthopaedics, Washington University in Saint Louis, Saint Louis, Missouri, United States Address for correspondence Addisu Mesfin, MD, Assistant Professor of Orthopaedics and Cancer Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14620, United States (e-mail: addisu_mesfin@urmc.rochester.edu).

Global Spine J 2015;5:17–22.

Table 3 NDI score and NDI pain subscore preoperatively and 6 weeks and 1 year postoperatively

	Preoperative score (points)	6 wk postoperative score (points)	p Value	1 y postoperative score (points)	p Value
NDI total score	12.5	10.1	0.109	8.5	<0.002
NDI pain subscore	1.29	0.87	<0.028	0.71	<0.007


NDI, Neck Disability Index.

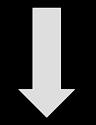
Patient History

- Prior Anterior Surgery
 - Recurrent Laryngeal N.
 - Bell's Palsy
- Prior Posterior Surgery
- Anatomical Considerations
 - Vertebral Artery
 - Achieving Fixation
- Special Medical History

Myelopathy Case

- 62F progressive loss of ambulatory capacity, balance, coordination
- VAS Neck 4
- NDI 38
- Exam: myelopathy

Focal Cervical Kyphosis

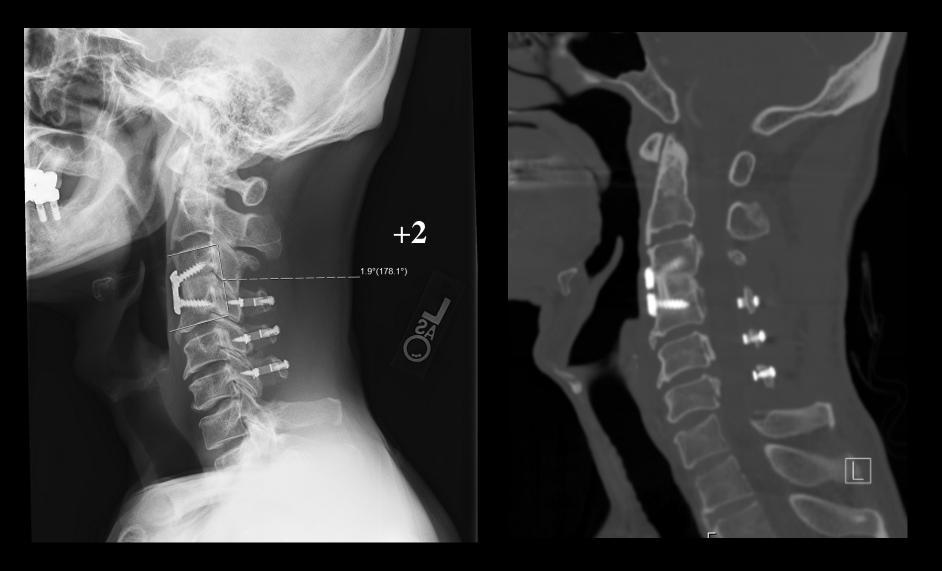


Cervical Alignment

Neck pain at Baseline

No Significant Radiculopathy

Restore Cervical Alignment


Opportunity to Make Posterior Procedure more Successful

2-yr follow up

VAS Neck 0

NDI 2

