ADULT SPINAL DEFORMITY: APPROPRIATE USE OF SURGERY AND NON-OPERATIVE CARE

Michael S. Chang, MD Sonoran Spine Center Assistant Professor of Orthopaedic Surgery University of Arizona Associate Clinical Professor Mayo Clinic - Scottsdale Phoenix, Arizona

> Feb, 2018 Park City, UT

COLLEGE OF MEDICINE PHOENIX

Adult Concerns

Pediatric

- Progression
- Cosmesis
- Pain

Adult

Pain

Neurological complaints

- Radiculopathy
- Neurogenic claudication
- Postural stabilization
- Balance restoration
- Progression

Technical Challenges

- Less flexible curves
- Less optimal bone quality
- Canal Interventions
- Co-morbidities
- Higher complication rates
 - Pseudarthrosis
 - Junctional issues
 - Inferior recovery

Should I even offer surgery?

 Real challenge is in deciding between which problems to address and who to operate on

Bigger vs. smaller surgery pros/cons

Non-op

- NSAIDS/Tylenol
- PT
- Muscle relaxants/anti-depressants/steroids
- Chiropractic manipulation/massage
- Oupping/Charismatic Healing/Nothing
- NO opioids

Sketchiness

Non-op

- Interventional
 - Facet Injections
 - Medial Branch Blocks
 - Rhizotomies
 - Discogram
- Generally inconsistent data
 - Temporary relief

ASD: Operative vs. Non-op

ISSG

- 268 op vs. 403 non-op
 - Significant improvement with surgery
 - No substantial improvement with non-op

215 non-op pts

- $\circ~$ 86 MCID vs 129 not MCID at 2 yrs
- MCID tended to have less baseline deformity and pain

In Bridwell et al

- 160 ASD
 - No significant improvement with non-op

Liu S. *Spine J.* 2016 16(2): 210-8 Smith JS. *Neurosurgery* 2016 78(6) 851-61 Bridwell. *Spine* 2009 15;34(20): 2171-8

Surgery is effective...

Albert, et al. Spine 1995

55 pts adult deformity No difference in <40yr vs >40yr old outcomes

Glassman, et al. Spine 2007

97 pts >65 yrs old, lami/fusion Complications did not affect outcome

Glassman, et al. Spine 2007

46 pts adult deformity, major/minor/no comp. 10% major complications affect outcome Minor and no comp. similar outcome

...But not without risk

• Cho, et al. Spine 2007

47 pts with DLS, age 67 yrs

Posterior fusion, 68% complications (acute plus chronic)

Buchowski, et al. SRS 2006

110 pts PSO, age 54, 11% neuro deficit

Crandall, et al. Spine 2009

40 pts with DLS, 15% NU, 18% adjacent Fx

20% revision surgery

Charosky, et al. SRS 2006

21 pts PSO for *revision* scoliosis, 4 yr follow-up 5 neuro deficits, 4 dural tears, 3 nonunions

Surgical Decisions

 Goal should be to treat primary symptoms with least amount of surgery while minimizing future problems

Goals for Adult Scoliosis Surgery

Address symptoms
 Achieve a balanced spine
 Balance > coronal cobb correction
 Maximize motion
 Minimize risk to patient

Radiographic Factors to Consider

- Stenosis Location & severity
- Stability Listhesis, osteophytes
- Curve size/flexibility
- Spinal balance Coronal/sagittal
- Prior spinal surgery

Clinical Factors to Consider

- Overall health
 - Physiologic Age
 - Co-morbidities
 - Activity level
 - Motivation/Expectation
 - Social Support
 - Bone density
- PE
- Size of surgery needed
 - Approaches
 - Need for Osteotomies
 - Revision

Age

Smith JS et al: Spine. 2011

- 206 pts age 25-85 for scoliosis surgery
- Complication rates increased with age:
 - · 25-44: 17%
 - · 45-64: 42%
 - · 65-85: 71%
- Significant functional improvement (SRS-22, ODI, back pain, leg pain)
 - Trend of improved result with greater age

Impact of Overall Health

• Fu KM et al: Spine 2011

- 22,857 pts undergoing spine surgery
- Overall complication rate: 8.4%
- Higher ASA grades had significantly higher complication rates:
 - ASA 1 had 5.4%
 - ASA 2 had 9%
 - \circ ASA 3 had 14.4%
 - \circ ASA 4 had 20.3%
 - \circ ASA 5 had 50%

Osteoporosis

- Plays a role in most common spine complications
 - Adjacent segment degeneration
 - Instrumentation failure
 - Pedicle fracture
 - Increased blood loss

• <u>Ding et al., CMJ 2011</u>

- 192 pts age >50 DLS vs. stenosis
 - 74% osteoporosis in DLS vs. 31% in stenosis alone

PE

- Most common lifethreatening complication in spine surgery
 - Mortality: 0.7%
 - DVT: 1-12%
 - PE: 1-2%
 - AP Surg: 3-6%

Anticoagulation

- Acute post op complication rate:
 - Prophylactic: 5.7% to 18 %
 - Therapeutic: 12 % to 67 %

DVT/PE Study of High Risk Pts

 67 consecutive patients treated without prophylactic IVC filter

- Pulmonary Embolism: 12.0 % (8 pts)
- PE mortality rate: 1.5 % (1 pt)

- 22 prospectively followed patients with prophylactic IVC filter
 - No symptomatic PE
 - IVC insertion complications: 0.0 %
 - Filter related complications: 4.5 %

Courtesy of Dr. Frank LaMarca

Ondra et al. Unpublished Data

Size of Surgery

Sansur CA et al, Spine, 2011

- 669 complications in 4980 SRS pts
- Higher rates associated with osteotomies, revisions, and AP approaches

Smith JS et al, Spine, 2011

- 578 SRS pts for FSI correction
- 29.4% short term complications
- More aggressive osteotomy yielded higher complication rates
 - \circ None 17%

0	SPO	28%
0	PSO	39%
0	VCR	61%

Revision Surgery

• <u>Cho, et al. Spine 2012</u>

166 pts for revision deformity surgery, 34.4% major complication rate

Glassman, et al. Spine 2007

62% vs. 48% complication rate revision vs. primary deformity surgery

• Chang, et al. SRS 2012

99 pts >75 age, 53% vs. 71% total complication rate in primary vs. revision surgery

Surgical Options

- 1. Decomp alone
- 2. Decomp w/limited posterior inst/fusion
- 3. Decomp w/fusion curve
- 4. \pm Decomp w/fusion and osteotomies

Case 1: 62 F

Neurogenic claudication only

Characteristics

- Central and lateral recess stenosis
- "Stable" spines radiographically
 - Minimal/absent rotatory subluxations
 - Osteophytes present

Decompression Only

5¹/₂ YEARS POSTOP

Case 2: 69 F

Left leg radiculopathy- L4 & L5

L4-5 Foraminal and Lateral Recess Stenosis

Characteristics

- Central/lat recess/foraminal stenosis
- Rotatory subluxations at stenotic levels
- Lack of stabilizing osteophytes
- Minimal back pain/deformity complaints

Decompression L4-5 PSF/TLIF

Case 3: 73 F

R Post leg pain and LBP

Characteristics

- +/- stenosis
- Severe rotatory subluxations/"unstable" spine
- Adequate sagittal/coronal alignment
- Adequate bone stock (osteoporosis)

Decompression + PSF T11-L5

Case 4: 68 F

LBP s/p 9 prev back surgeries

Characteristics

- $\odot \pm$ Stenosis
- Often revision scenario
- ↑ Back pain/deformity complaints
- Lumbar flatback/sagittal imbalance
- Strong protoplasm to tolerate combined procedures

L3 ASx PSO, T10 – Pelvis PSF

Principles of ASD

- Choose the right intervention for the right patient at the right time
- "Less is More"
 - The least aggressive procedure for the maximal amount of gain is preferred
 - Short segment fusions are often all that's indicated over the decompressed levels
 - Pain relief and improved function and overall balance is more important than maximum curve correction

Thank you!

Michael S. Chang, MD Sonoran Spine Center Assistant Professor of Orthopaedic Surgery University of Arizona Associate Clinical Professor Mayo Clinic – Scottsdale Phoenix/Scottsdale, AZ

