Direct Lateral Approaches to the Spine: Advantages and Limitations

Stephen Tolhurst, M.D. Texas Back Institute

Disclosures

Consultant

- Innovasis
- Titan Spine
- K2M
- Royalties
 - Choice Spine

Rationale for the lateral approach

- Alternative posterior procedures
 - TLIF
 - PLIF

Lateral is better reconstruction, better fusion?

Lateral Interbody Indications

- I have used it for:
 - Degenerative scoliosis
 - Degen/Isthmic spondylolisthesis
 - Non-union
 - Revisions, recurrent compression
 - Adjacent segment disease
 - Infection
 - 🛞 DDD
- Lateral interbody fusion benefits:
 - Excellent support of axial load
 - Broad fusion surface
 - Can perform bilateral releases
- Caution: Sagittal deformity

Pre-op Planning Pearls

- Standing X-rays:
 - Check for unfavorable anatomy
 - ✤ High iliac crest at L4-5**
 - & Long 11th and 12th ribs
 - Go intercostal or remove part of ribs

MRI:

- Find the vessels
 - (esp in DEFORMITY)
- Psoas size, shape, position?
 - Beware Mickey Mouse Sign

Left or right approach?

Deformity correction good on either side

- Go on side easiest to enter disk
- Convex side for easier entry
- Concave side for multilevel
- L4/5 often has only one option
- Retroperitoneal anatomy look at MRI
 - Psoas, lumbar plexus, ureter
 - & Low Kidney
- Prior retroperitoneal surgery
 Contralateral ideal
- Tough lateral osteophyte
 Use contralateral or plan osteotomy
- Onilateral leg pain
 - Use ipsilateral

Example; Degenerative scoliosis, stenosis

Fluoroscopy Pearls...

- Provisionally tape pelvis and chest
- Get perfect AP view
- Finish taping and flex patient
- Laterally typically perfect or nearly so this way
- Avoids lots of re-taping
- Add tape straight from crest to foot of bed to rock pelvis out of the way

Excellent for obese patients

- In lateral position, the abdominal and peritoneal fat fall anterior
- The trans-psoas procedure is not much different (or harder) in obese patients
- Longer tube / portal

Patient Discharged Postop Day #1

Nerve Injury Avoidance Pearls

Use REAL neuro-monitoring

- Experienced and familiar technician
- Direct look and manual dissection through psoas (improved my monitoring numbers)
- Dissect through anterior psoas and pull back before dilator/pin placement
- Psoas size, position, shape
 - Beware the Mickey Mouse Sign
 - Plan docking site and psoas mobilization preop

Case; Isthmic Spondylolisthesis

Postop Isthmic Spondylolisthesis

Recurrent disk herniation, segmental collapse

Pearl; use DIRECT VISUALIZATION

- Split muscle layers under direct visualization:
 - External Oblique
 - Internal Oblique
 - Transversalis
- See the retroperitoneal fat
- Sweep posterior to anterior:
 - 1. Quadratus Lumborum
 - 2. Transverse Process
 - 3. Psoas
- Look around visualize:
 - Psoas shape and position
 - Vessels?
 - Oreter?
 - Genito-femoral nerve?

Use wide implants when possible

- 22 mm AP dimension may be associated with lower risk of subsidence (Pimenta, 2011)
- Critical for indirect decompression or correction
- Wide implant may not be applicable with significant listhesis (> grade 1)

TABLE 4. Subsidence Rates as They Relate to Implant Width and Length*		
Implant Dimension	Levels	Percentage
Width		
18 mm	19/135	14.1
22 mm	2/103	1.9
Length		
50 mm	2/38	5.3
55 mm	15/119	12.6
60 mm	4/81	4.9

Biomechanical Rationale

Consider how:

- Implant surface area
- Implant bone interface
- Implant internal volume
- Where does TLIF cage go?

- Helps patients with:
 - Osteoporosis
 - Segmental deformities
 - Fusion risks

Pearl: do not overstuff

- Apophyseal and marginal cortex bone provide great support for interbody reconstruction.
- Temptation is to oversize, trying to get more lordosis, or more restoration of foramen height (especially if implant bulleted)
- Beware of the ability to oversize the height of the device.
- Overstuffing may be associated with
 - Subsidence
 - Iatrogenic trauma including fracture
 - Postoperative pain from over-distraction (I have seen this...)

PEEK vs. Titanium

- If reducing posteriorly (titanium purchase too good)
- Scoliosis/rotational deformity (if in foramen, PEEK can be burred away)
- Steoporotic?

- Fusion Challenged
- Basic degen
- Minimal deformity

Displacement – Buttress plate can help

Limit psoas injury

- Limit retraction time
- Limit retraction force (don't open retractor more than needed)
- At end of case:
 - Meticulous hemostasis
 - Withdraw retractor and look for bleeders
 - Wax hole from fixation screw (if needed)
 - Surgiflo in psoas
 - Depo-medrol in psoas muscle

 Inform patient of expectations pre-op (analogous to ACDF dysphagia)

Expanding Lateral Indications

High crest (past midbody L4 on lateral)

- Tf psoas and vessels OK, still a lateral candidate
- TAKE DOWN SOME CREST
- Also good for breaking bed less, avoiding angled instruments, avoiding endplate damage
- Incision at top of crest
 - Expose some crest, cobb both surfaces
 - Expose psoas as normal, pin and initial dilator in disc
 - Resect crest around pin until it stands straight
 - Bone wax crest

Case - High Crest and Transitional Anatomy

