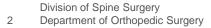


Department of Orthopedic Surgery

Navigation/Robotics Technologies in MIS Surgery

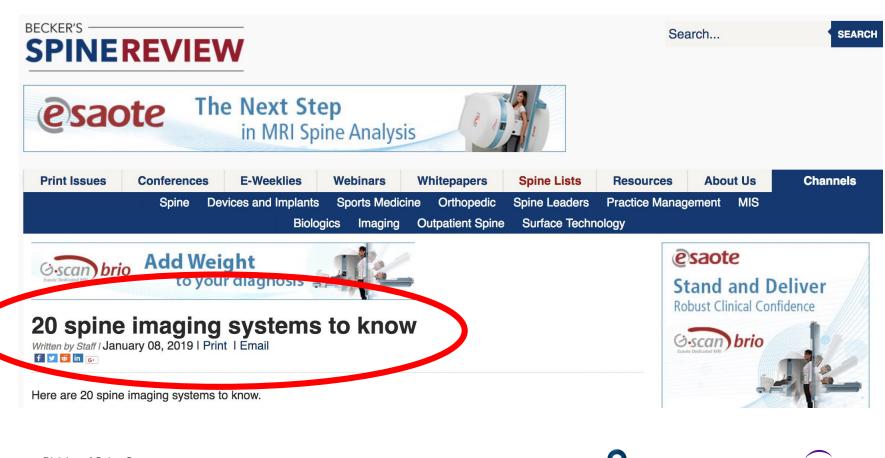

Jonathan R. Stieber, M.D.

Clinical Assistant Professor of Orthopaedic Surgery New York University School of Medicine

Navigation

Early Navigation

- Preop CT and Surface Registration
- Intraoperative ISO-C


- Touch
- Everything
- Add
- Like
- Two
- Hours

ORTHOMANHATTAN

NYU Langone

Health

Spinal Navigation

Stryker NAV3i

Medtronic StealthStation S8

BrainLab

O



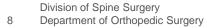
Accuracy of Pedicle Screw Insertion Among 3 Image-Guided Navigation Systems: Systematic Review and Meta-Analysis

Jin Peng Du¹, Yong Fan², Qi Ning Wu², Dai Hua Wang¹, Jing Zhang¹, Ding Jun Hao²

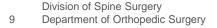
World Neurosurg. (2018) 109:24-30.

- 3D FluoroNav, 2D FluoroNav, CT Nav
- 125 papers identified
- 10 articles chosen

7D Machine-vision Image Guided Surgery (MvIGS)

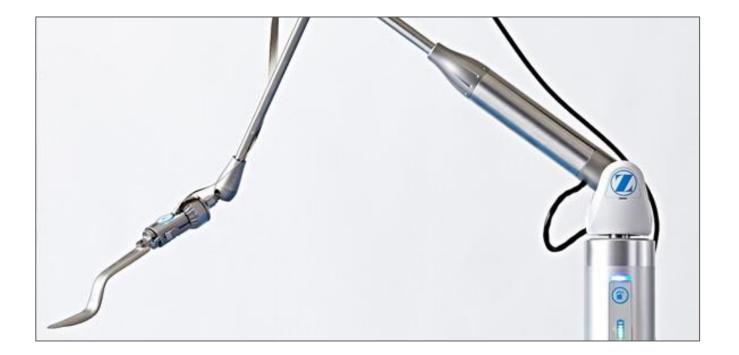

- Optical-based
- Radiation-free
- Fast (registration in 20 seconds)
- Removes line-of-sight issues with machine vision technology embedded in the attached surgical light
- Requires at least mini-open exposure

Robotics



Potential Robotic Advantages

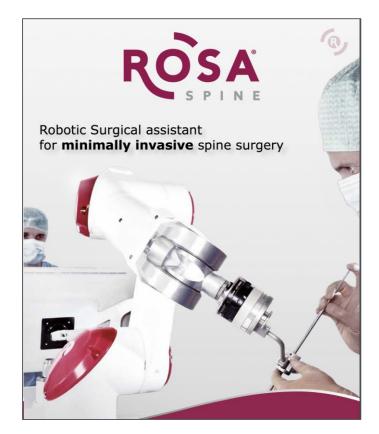
- Truly maximize advantages of navigation
 - Precise maintenance of trajectory
 - Precise depth control
 - Overcome challenges when surface landmarks are obscured
- Allow for optimal preoperative planning
- Minimize radiation
- Shorten OR Time
- Make surgery safer, more efficient and more reproducible



What's out there?

Zimmer/Biomet: Walter Lorenz surgical assist arm

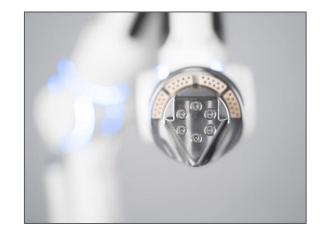
Medtech / Zimmer Rosa


Division of Spine Surgery Department of Orthopedic Surgery

Medtech / Zimmer Rosa

- Intraoperative CT Only
- Dynamic Guidance
 - Robot arm continual readjusts to the patient
- Pending FDA approval
- Applications beyond Spine: Brain/Ortho

Brain Lab Cirq



Brain Lab Cirq

- Portable, light-weight (approx. 11kg)
- Mounted directly to the O.R. table rail
- Integrated computer unit no footprint
- Port for different application-specific modules
- Includes tissue protecting trocars for MIS access
- Drill tube stabilization with sharp teeth for anchoring
- Full drilling guidance with snap-on depth-control
- Open Platform
- FDA Approval Pending

Nuvasive Pulse

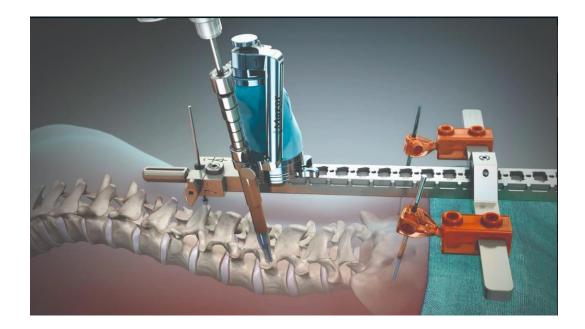
Integrates:

- Navigation (Improved Line-of-Sight)
- Less-Ray
- 2D and 3D Imaging
- Siemens Intraoperative Imaging (ISO-C)
- Neurovision
- Bendini
- Robotics ?

Stryker Mako (Spine Robot in Development)

- Stryker acquired MAKO in 2013
- Well-entrenched in Navigation
- Very little public information available
- Single-step pedicle screw placement ?
- + K2M ?

17



Actual FDA-Cleared Spinal Robotics:

Mazor Renaissance

Division of Spine Surgery_ 19 Department of Orthopedic Surgery

Substantial Advances

CT-Fluoro Sync

Individual Vertebral Registration

SPINE Volume 43, Number 23, pp 1670–1677 © 2018 Wolters Kluwer Health, Inc. All rights reserved.

Literature Review

The Arrival of Robotics in Spine Surgery

A Review of the Literature

Alexander Ghasem, MD,* Akhil Sharma, BS,† Dylan N. Greif, BA,† Milad Alam, MD,* and Motasem Al Maaieh, MD*

- 32 articles were selected for study inclusion
- Mazor Renaissance / Spine Assist
- Pedicle screw accuracy was comparable if not superior with robot
- OR time initially longer
- Radiation exposure variable but decreased with learning curve
- Multilevel procedures trended toward earlier discharge in robot patients

Division of Spine Surgery 21 Department of Orthopedic Surgery

- 6 studies: 158 patients (688 screws) robot-assisted / 148 patients (672 screws) free-hand
- Grade A accuracy rate in robot-assisted group superior to freehand group (RR 1.03, 95% CI 1.00, 1.06; P = 0.04)
- Grade A + B accuracy rate same between the two groups

(RR 1.01, 95% CI0.99, 1.02; P = 0.29)

- Robot group had significantly fewer proximal facet joint violations vs. freehand (RR 0.07, 95% CI 0.01, 0.55; P = 0.01)
- Robot significantly reduced intraoperative radiation time and radiation dosage

(MD - 12.38, 95% CI - 17.95, - 6.80; P < 0.0001); (SMD - 0.64, 95% CI - 0.85, - 0.43; P < 0.00001)

• Duration was longer in robot vs. freehand

(MD 20.53, 95% CI 5.17, 35.90; P = 0.009)

Medtronic / Mazor X 'Stealth Edition'

- Builds on Mazor's Experience
- Table-Based
- Attaches directly to spine/pelvis
- Enhanced with navigation

Globus ExcelsiusGPS

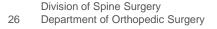
- Multi-Functional Navigation
- Floor-based unit
- Preop / Intraoperative CT & <u>Fluoro</u> Work Flows
- Allows for Free-Hand Navigation
- Exchangeable End-Effector

Initial NYU Experience with Globus ExcelsiusGPS

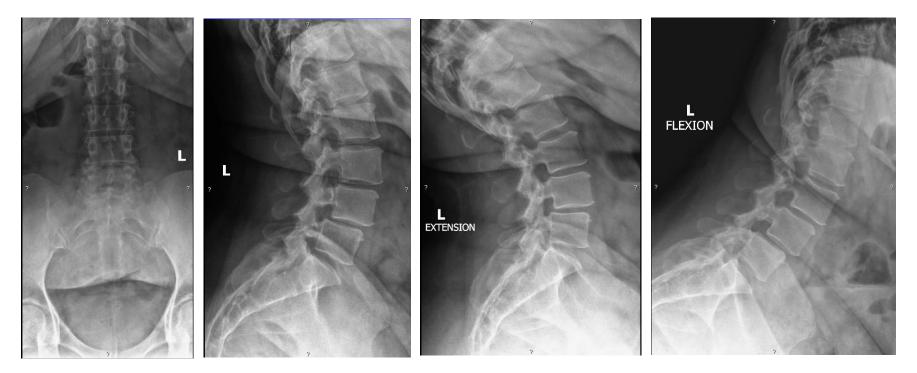
Deeptee Jain, MD, Jordan Manning, BA, Elizabeth Lord, MD, Themistocles Protopsaltis, MD, Aaron Buckland, MD, John Bendo, MD, Charla Fischer, MD, Jeffrey Goldstein, MD

Number of patients	106
Cases aborted prior to screw placement	5
Total screws placed Pedicle Iliac S2AI	636 6 1
Screws not placed with robot	5 (1%)
Planning method Preoperative CT Intraoperative fluoro	88 13
Method of screw placement Percutaneous Open	86 15
Interbodies ALIF LLIF TLIF	28 12 58
Screw related complications	0
Return to OR for screw revision	0

ORTHOMANHATTAN

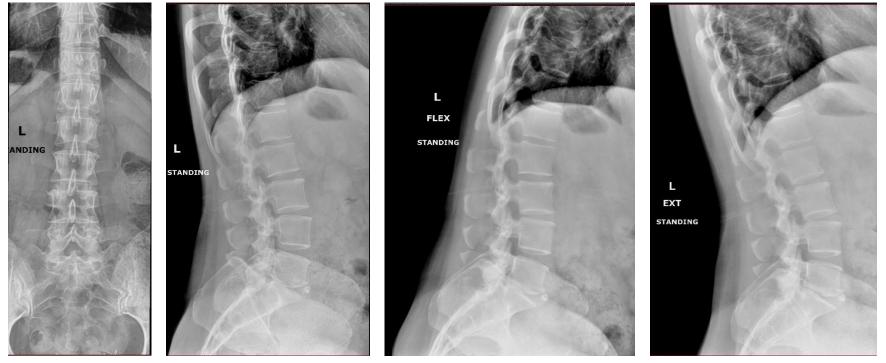

25

Robotic Pearls and Pitfalls (NYU Experience)


- Bad Merge
- Skiving
- Soft Tissue Pressure
- Spinal Instability
- Patient breathing
- "Noise"

L4-5 Unstable Degenerative Spondylolisthesis

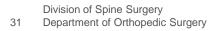
Advanced L4-5 Facet Arthopathy with Instability



Illustrative Robotic-Assisted Case

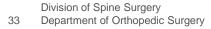
50 yo F c/o Back and LLE pain, L EHL/TA/Hip Abductors 4/5





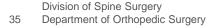
NYU Langone Health

Pre-Op Planning and Setup



L5-S1 Robotically-Assisted MIS TLIF/PSF

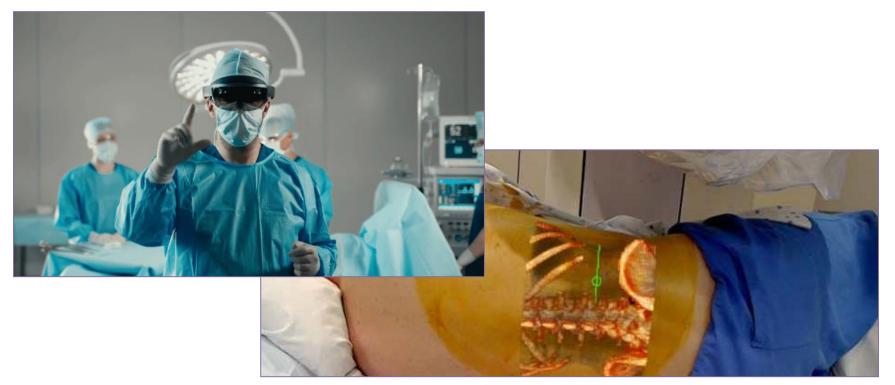
Initial Postoperative Follow-up POD#9


Future Capabilities

- Navigated Burr
- Tubular guidance and fixation
- TLIF/Interbody Insertion

More Distant Future Capabilities

Controlled Interbody Prep



Navigation & Robots... what about Augmented Reality?

AR / Microsoft Hololens

Jonathan R. Stieber, M.D.

Clinical Assistant Professor of Orthopaedic Surgery New York University School of Medicine

Thank You

Division of Spine Surgery Department of Orthopedic Surgery