MIS TLIF: Tubes

Khoi D. Than, M.D.

Assistant Professor

Department of Neurological Surgery

Oregon Health & Science University

Disclosures

• Consultant: Bioventus

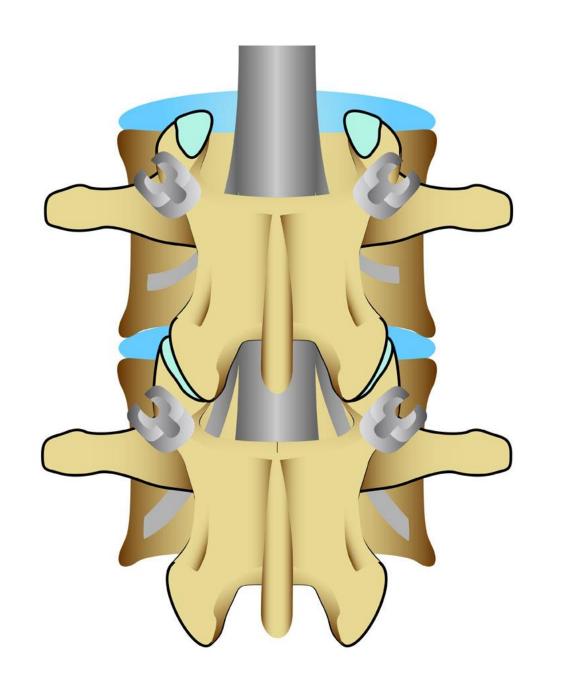
Medtronic

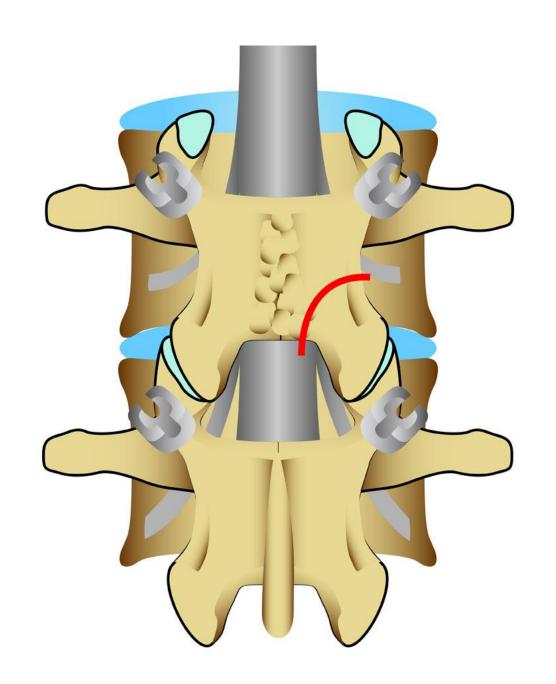
Outline

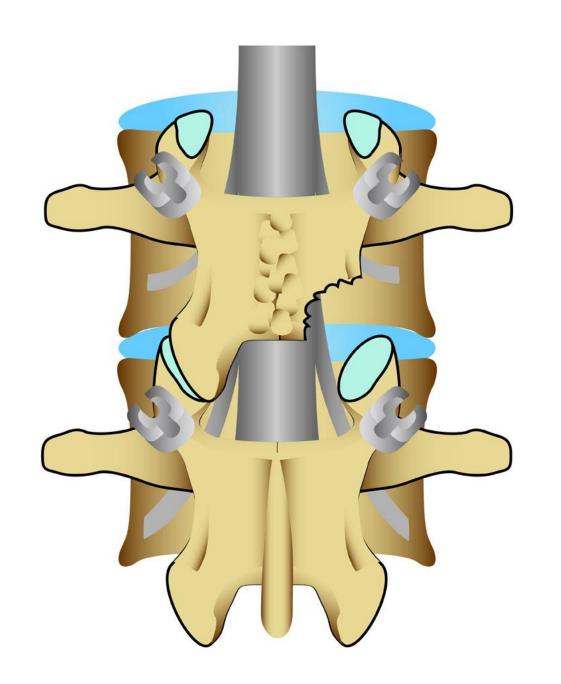
History

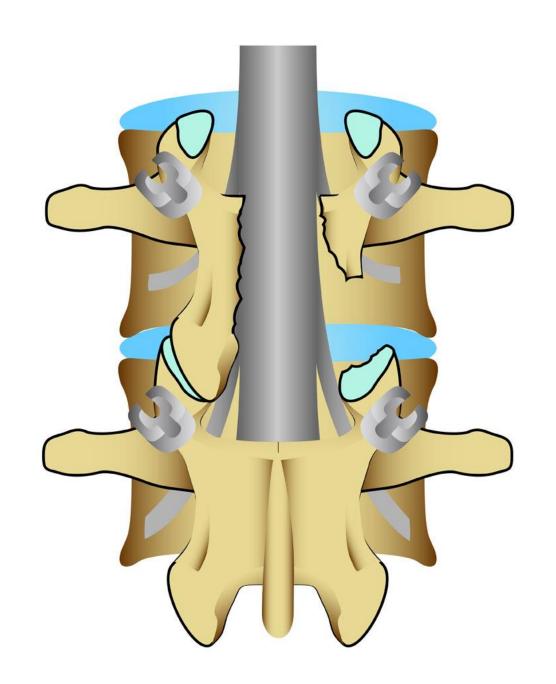
• Technique

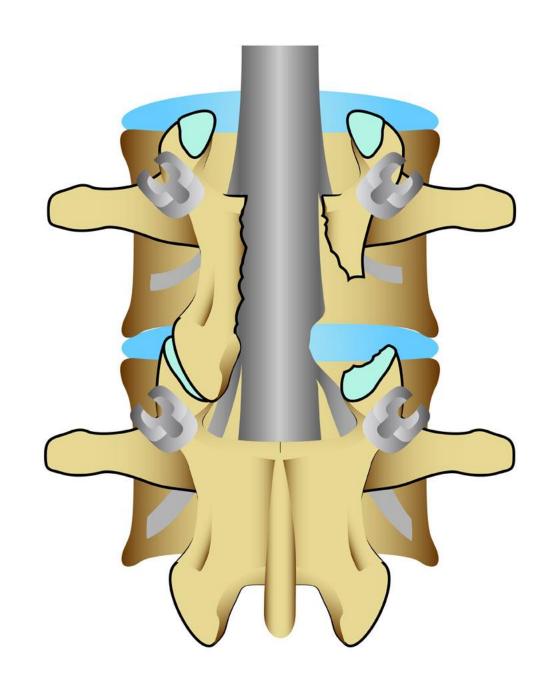
• Literature

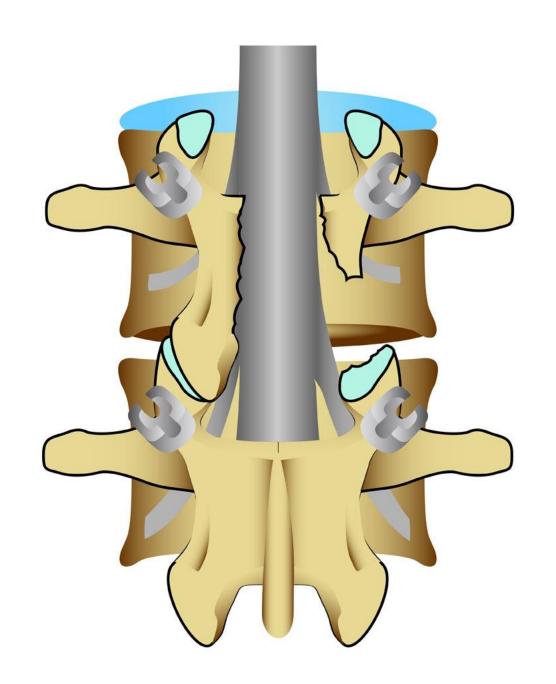

TLIF

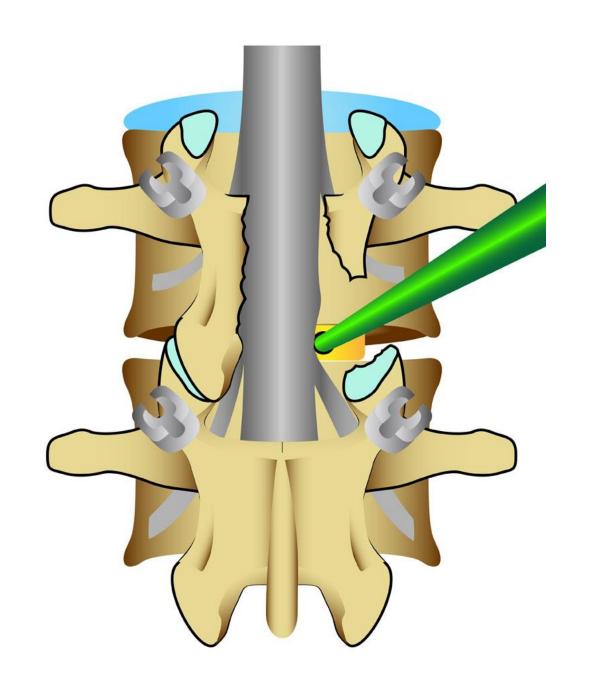

- History
 - ➤ Developed by **Jürgen Harms** and Rolinger in 1982

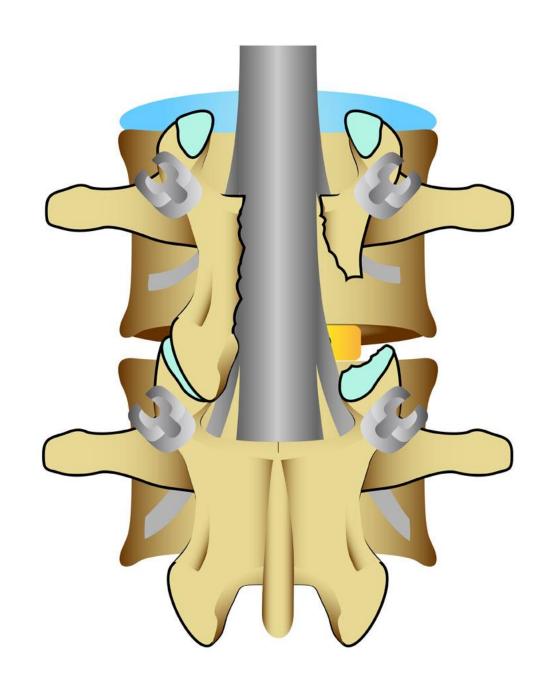


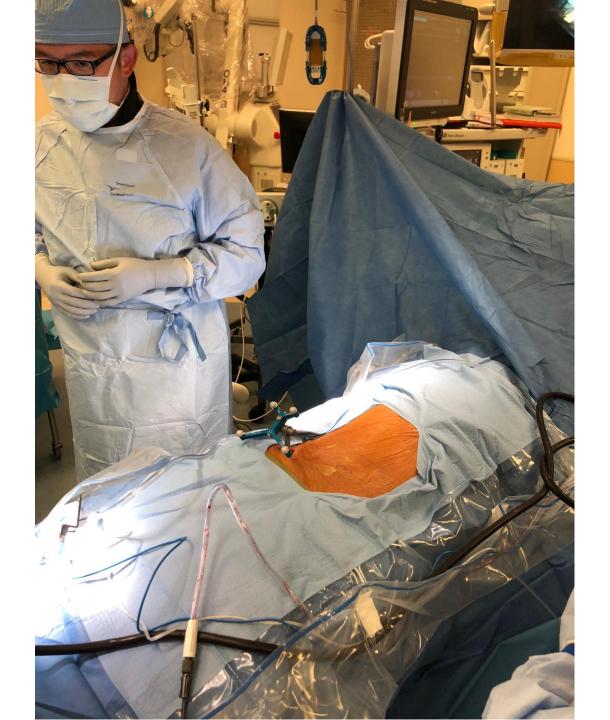

➤ Minimally invasive TLIF described by Foley in 2005

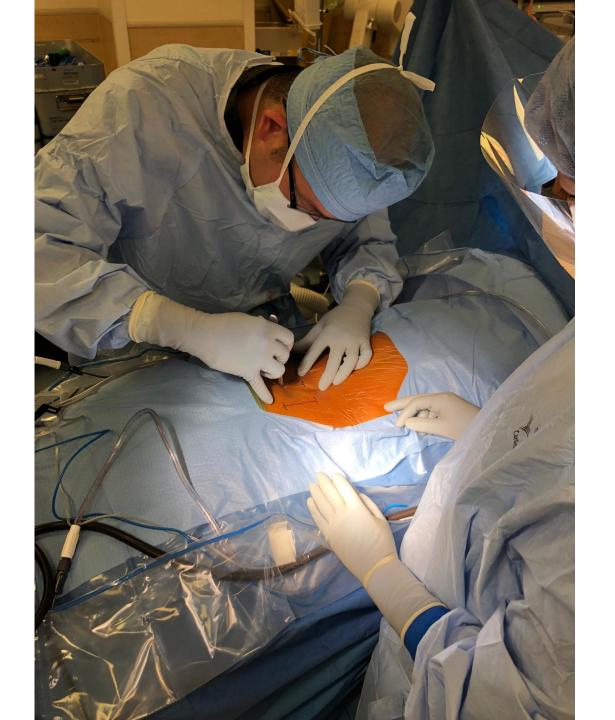


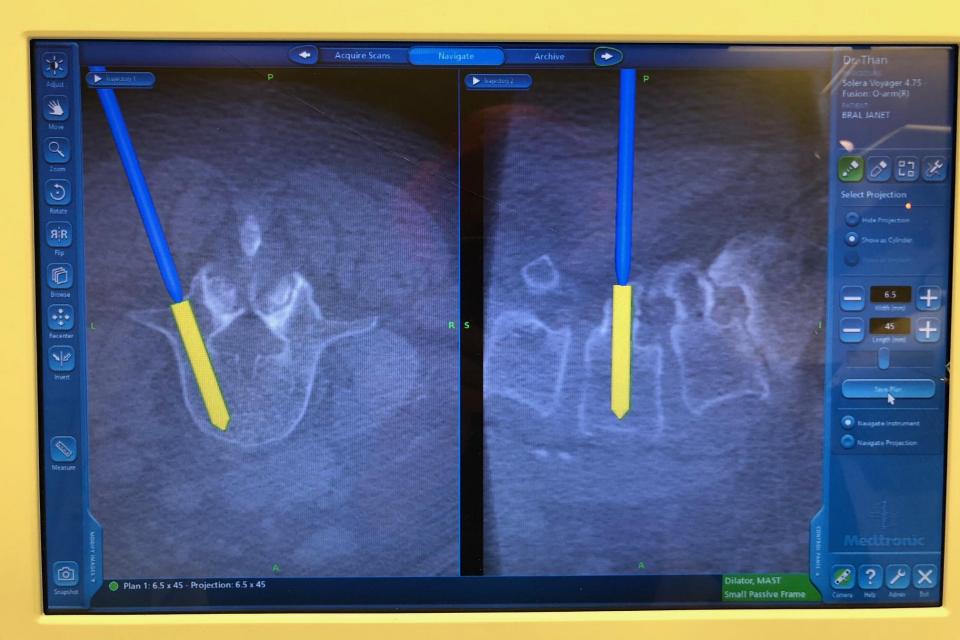












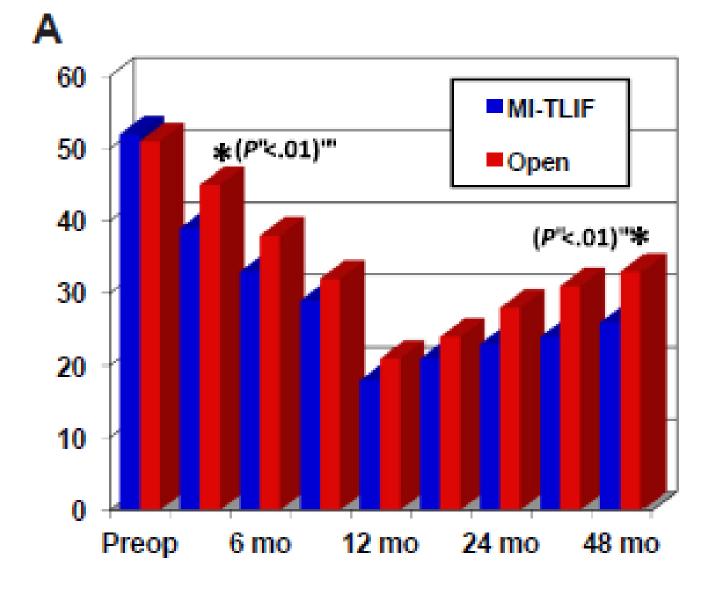
TLIF

Outcomes

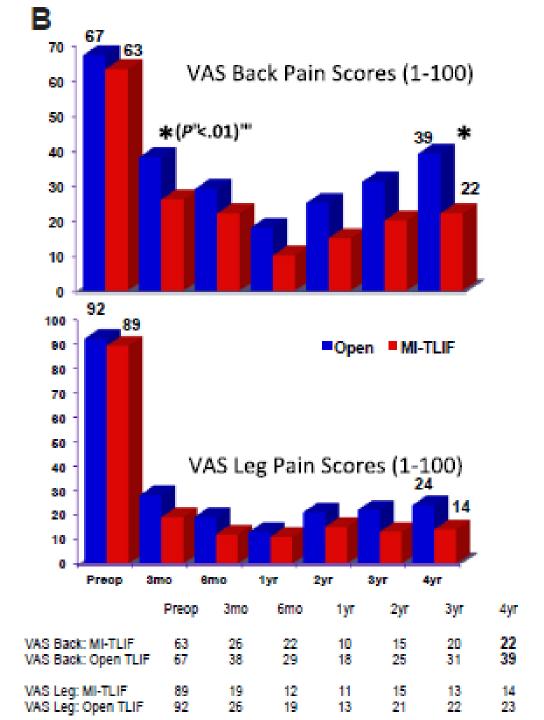
Minimally Invasive
Transforaminal Lumbar
Interbody Fusion (MI-TLIF)
Surgical Technique, Long-Term 4-year
Prospective Outcomes, and Complications
Compared with an Open TLIF Cohort

Albert P. Wong, MD^a, Zachary A. Smith, MD^a, James A. Stadler III, MD^a, Xue Yu Hu, MD^b, Jia Zhi Yan, MD^c, Xin Feng Li, MD^d, Ji Hyun Lee, PA-C^e, Larry T. Khoo, MD^{e,*}

Table 1
Aggregated perioperative data, outcomes, and complications for MI-TLIF (144) versus open TLIF (54)


Variable

Present Series of MI-TLIF


Control Series of Open TLIF

Demographics				
No. of patients (levels)	144 (79 1-level, 55 2-level)	54 (35 1-level, 21 2-level)		
Mean age (y)	61	58		
Males/females	61/83	25/29		
Follow-up, mo (range)	45 (34-60)	46 (33–58)		
L5/S1, L4/5, L3/4, L2/3 (%)	45, 43, 9, 3	39, 52, 7, 2		
Perioperative Data				
Mean operating room time per level (h)	2.05	3.75		
Mean blood loss (mL)	115	485		
Radiation exposure (mSv/level)	1.90	0.75		
Average length of stay (d)	2.75	4.40		
Radiographic Outcomes				
CT-Based fusion rate (18-24 mo) (%)	92.5	93.5		
Lordotic change (degrees per level)	5.65	4.10		
Subsidence (3-6 mo; 6-12 mo) (%)	9.25, 2.5	8.80, 3		
Revision for pseudarthrosis	2.1% (3)	1.9% (2)		

Table 2 Aggregated outcomes for MI-TLIF studies compared with the present series (n = 198 with 144 MI-TLIF)						
Variable	Literature Review	Present Series of MI-TLIF	Control Series of Open TLIF			
Total studies	28					
N	1291	144	54			
Follow-up, mo (range)	12-72	45 (34–60)	46 (33-58)			
Visual Analog Scale (VAS) Back	Pain					
Studies included	17					
No. of patients (levels)	721	144 (79 1-level, 55 2-level)	54 (35 1-level, 21 2-level)			
Preoperative score (mean)	6.68	6.37	6.72			
Postoperative score (mean)	1.92	1.05 (1 y), 2.25 (4 y)	1.70 (1 y), 3.95 (4 y)			
Change (mean)	4.76	5.32 (1 y), 4.12 (4 y)	5.02 (1 y), 2.77 (4 y)			
Percentage improvement (mean)	71.2	83 (1 y), 65 (4 y)	75 (1 y), 42 (4 y)			
VAS Leg Pain						
Studies included	13					
No. of patients (levels)	556	144 (79 1-level, 55 2-level)	54 (35 1-level, 21 2-level)			
Preoperative score (mean)	7.06	8.90	8.82			
Postoperative score (mean)	1.72	1.15 (1 y), 1.43 (4 y)	1.30 (1 y), 2.22 (4 y)			
Change (mean)	5.34	7.75 (1 y), 7.47 (4 y)	7.52 (1 y), 6.60 (4 y)			
Percentage improvement (mean)	75.7	87 (1 y), 83 (4 y)	85 (1 y), 75 (4 y)			
Oswestry Disability Index						
Studies included	24					
No. of patients (levels)	1072	144 (79 1-level, 55 2-level)	54 (35 1-level, 21 2-level)			
Preoperative score (mean)	48.9	52.8	51.2			
Postoperative score (mean)	19.4	18 (1 y), 26 (4 y)	21 (1 y), 33 (4 y)			
Change (mean)	29.5	34.8 (1 y), 26.8 (4 y)	30.2 (1 y), 18.2 (4 y)			
Percentage improvement (mean)	60.3	66 (1 y), 51 (4 y)	59 (1 y), 36 (4 y)			
Fusion Rate						
Studies included	24					
No. of patients (levels)	1132	144 (79 1-level, 55 2-level)	54 (35 1-level, 21 2-level)			
Fusion percentage (mean)	93.5	92.5	93.5			
Systems Cost						
No. of patients (levels)		34 (34 1-level)	34 (34 1-level)			
Hospital surgery/admission costs (US\$)		19,925	23,479			

	Preop	3mo	6mo	1yr	2yr	Зуг	4yr
ODI: MI-TLIF ODI: Open TLIF	52 51	39 45					26 33

Journal www.sasjournal.com

SAS Journal 4 (2010) 47-53

Clinical and radiographic outcomes after minimally invasive transforaminal lumbar interbody fusion

Arnold B. Etame, MD, Anthony C. Wang, MD, Khoi D. Than, MD, Paul Park, MD *

Department of Neurosurgery, University of Michigan Health System, Ann Arbor, MI

Methods: Literature search using PubMed database.

Results: Eight retrospective clinical studies and 1 prospective clinical study were identified. No randomized studies were found. The indications for surgery were low-back pain and/or radicular symptoms secondary to spondylolisthesis and/or degenerative disc disease. Analysis of radiographic outcomes demonstrated a fusion rate greater than 90% in the vast majority of patients. Patients also experienced a significant improvement in functional outcome parameters at a mean follow-up of 20 months. Comparison of functional outcomes of MI-TLIF patients to a similar matched cohort of patients who underwent conventional open TLIF did not demonstrate any statistically significant difference between both cohorts.

Conclusion: For carefully selected patients, MI-TLIF has a very favorable long term outcome that is comparable to conventional open TLIF, with the added benefit of decreased adjacent tissue injury.

© 2010 SAS - The International Society for the Advancement of Spine Surgery. Published by Elsevier Inc. All rights reserved.

Surgical Outcomes for Minimally Invasive vs Open Transforaminal Lumbar Interbody Fusion: An Updated Systematic Review and Meta-analysis

Nickalus R. Khan, MD*

Aaron J. Clark, MD, PhD*‡

Siang Liao Lee, MD§

Garrett T. Venable, BS||

Nicholas B. Rossi, MD*

Kevin T. Foley, MD*‡

*Department of Neurosurgery, University of Tennessee Health Sciences Center, Memphis, Tennessee; ‡Semmes-Murphey Neurologic & Spine Institute, Memphis, Tennessee; §Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; ||College of Medicine, University of Tennessee Health Sciences Center, Memphis, Tennessee

Correspondence:

Kevin T. Foley, MD, 6325 Humphreys Blvd, Memphis, TN 38120. E-mail: kfoley@usit.net

Received, January 26, 2015. Accepted, June 8, 2015.

Copyright © 2015 by the Congress of Neurological Surgeons. **BACKGROUND:** Minimally invasive transforaminal lumbar interbody fusion (TLIF)—or MI-TLIF—has been increasing in prevalence compared with open TLIF (O-TLIF) procedures. The use of MI-TLIF is an evolving technique with conflicting reports in the literature about outcomes.

OBJECTIVE: To investigate the impact of MI-TLIF in comparison with O-TLIF for early and late outcomes by using the Visual Analog Scale for back pain (VAS-back) and the Oswestry Disability Index (ODI). Secondary end points include blood loss, operative time, radiation exposure, length of stay, fusion rates, and complications between the 2 procedures.

METHODS: During August 2014, a systematic literature search was performed identifying 987 articles. Of these, 30 met inclusion criteria. A random-effects meta-analysis was performed by using both pooled and subset analyses based on study type.

RESULTS: Our meta-analysis demonstrated that MI-TLIF reduced blood loss (P < .001), length of stay (P < .001), and complications (P = .001) but increased radiation exposure (P < .001). No differences were found in fusion rate (P = .61) and operative time (P = .34). A decrease in late VAS-back scores was demonstrated for MI TLIF (P < .001), but no differences were found in early VAS-back, early ODI, and late ODI.

CONCLUSION: MI-TLIF is associated with reduced blood loss, decreased length of stay, decreased complication rates, and increased radiation exposure. The rates of fusion and operative time are similar between MI-TLIF and O-TLIF. Differences in long-term outcomes in MI-TLIF vs O-TLIF are inconclusive and require more research, particularly in the form of large, multi-institutional prospective randomized controlled trials.

DOI: 10.1227/NEU.00000000000000913

KEY WORDS: Minimally invasive, Spine surgery, Transforaminal lumbar interbody fusion

Neurosurgery 0:1-28, 2015

www.neurosurgery-online.com

Is MIS TLIF kyphogenic?

SPINE Volume 41, Number 8S, pp S50-S58 © 2016 Wolters Kluwer Health, Inc. All rights reserved

LITERATURE REVIEW

Preservation or Restoration of Segmental and Regional Spinal Lordosis Using Minimally Invasive Interbody Fusion Techniques in Degenerative Lumbar Conditions

A Literature Review

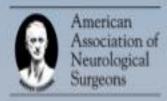
Juan S. Uribe, MD,* Sue Lynn Myhre, PhD,† and Jim A. Youssef, MD†

Study Characteristics		Treatment C			Change			
Author	Pro- cedure	Indica- tion	Ant Ivls	Lvls	LL Δ (%)	Seg Lord ∆ (%)	PT Δ (%)	SVA Δ (%)
Lee et al. ¹²	Mini- open TLIF	Degen / lytic spondy	NR	NR	1.5 (3)	2 (17)	-3.7 (-11)	NR
Wong et al. ²³	MIS TLIF	NR	NR	NR	NR	5.65	NR	NR
Yson et al. ²⁴	MIS TLIF	NR	NR	NR	NR	7.2 (89)	NR	NR
Kim et al.9	MIS TLIF	Degen	NR	NR	7.4 (26)	1.2 (8)	NR	NR
Dahdaleh et al. ⁶	MIS TLIF	Degen spondy	NR	NR	NR	0.4 (3)	NR	NR
Dahdaleh et al. ⁶	MIS TLIF	Degen spondy	NR	NR	NR	2.1 (23)	NR	NR
Min et al. ¹⁵	Unilateral MIS TLIF	NR	NR	NR	7 (24)	NR	NR	NR
Min et al. ¹⁵	Bilateral MIS TLIF	NR	NR	NR	4.81 (14)	NR	NR	NR
Tsutsumimoto et al. ⁹	Mini- open bilateral posterior IBF	Degen	NR	NR	NR	NR	NR	NR
Kim et al. ²⁵	Mini-TLIF	Isthmic spondy	NR	NR	1.4 (3)	2.5 (16)	NR	NR

MIS TLIF

- 1.5-7.4 (median ~5) degrees of lumbar lordosis
- 0.4-7.2 (median ~2) degrees of segmental lordosis
- Unclear how many levels treated

Thank You



The 36th Annual Meeting of the Section on Disorders of the Spine and Peripheral Nervesote !!

Technical Innovation for Restoring Patient Function

