ADULT SPINAL DEFORMITY: WHEN CAN WE DO LESS AND WHEN MUST WE DO MORE

> Michael S. Chang, MD Sonoran Spine Center Assistant Professor of Orthopaedic Surgery University of Arizona Associate Clinical Professor Mayo Clinic - Scottsdale Phoenix, Arizona

> > Feb, 2018 Park City, UT

Case: 82 F c/o LBP

2 sx for L 2 and T 12 comp fx, 80 lbs, T = -2.5

ST. JOSEPH'S RI DOB: 8/30/7

R

800

Right

Should I even offer surgery?

- Real challenge is in deciding between which problems to address and who to operate on
- Bigger vs. smaller surgery pros/cons
 - Levels?
 - Osteotomies?

Level Selection

How do we optimize upper and lower limits of construct?

How much is necessary?

Upper Instrumented vertebrae

- UIV should be
 - Neutral
 - At or above the upper end vertebra
- Avoiding ending at:
 - Listhesis
 - Rotated spinal segment
 - Region of kyphosis
 - At apex of deformity
 - Junctions (T1, L1)

Bridwell J neurosurg spine 2004

Instrumenting to T10 vs L1

Benefits

- Reduces adjacent segment stresses & Junctional kyphosis
- 10th vertebrae
 - Supported by a true rib
 - Increased ligamentous support

- Disadvantages
 - Greater blood loss
 - Increased surgical times
 - Increased risk of pseudoarthrosis
 - Greater Cost

What about T3 vs. T10?

Complications: <u>Advantages:</u> Pseudo? Op time? EBL?

less PJK? Less re-op?

Authors	year	LT (t10)	UT (t3)
Kim et al (ISSG)	2014	16%	19%
Ha et al (UCSF/korea)	2013	34%	27%
O'Shaughnessy (Wash U)	2012	18%	10%

Re-operation

Authors	year	LT (t10)	UT (t3)
Kim et al (ISSG)	2014	22%	15%
Ha et al (UCSF/korea)	2013	48%	54%
O'Shaughnessy (Wash U)	2012	10.5%	20%

Complication

Authors	year	LT (t10)	UT (t3)
Kim et al (ISSG)	2014	39%	57%
O'Shaughnessy (Wash U)	2012	36.8%	50%

SPINE Volume 37, Number 10, pp 884–890 ©2012, Lippincott Williams & Wilkins

Does a Long-Fusion "T3-Sacrum" Portend a Worse Outcome Than a Short-Fusion "T10-Sacrum" in Primary Surgery for Adult Scoliosis?

Brian A. O'Shaughnessy, MD, Keith H. Bridwell, MD, Lawrence G. Lenke, MD, Woojin Cho, MD, PhD, Christine Baldus, RN, Michael S. Chang, MD, Joshua D. Auerbach, MD, and Charles H. Crawford, MD

TABLE 6. Complications Data From the UpperThoracic and Lower Thoracic Groups

Complications	Upper Thoracic	Lower Thoracic	Р
Overall (%)	50.0	36.8	0.334
Perioperative (%)	30.0	15.8	0.307
Major perioperative (%)	15.0	2.6	0.114
Pseudarthrosis (%)	20.0	5.3	0.168
Total PJK (%)	10.0	18.4	0.476
Surgical PJK (%)	0.0	2.6	1.000
Revision surgery (%)	20.0	10.5	0.428
PIK indicates proximal junction	onal kyphosis.		

SPINE Volume 39, Number 13, pp E795-E799 ©2014, Lippincott Williams & Wilkins

DEFORMITY

Upper Thoracic *Versus* Lower Thoracic Upper Instrumented Vertebrae Endpoints Have Similar Outcomes and Complications in Adult Scoliosis

Han Jo Kim, MD,* Oheneba Boachie-Adjei, MD,* Christopher I. Shaffrey, MD,† Frank Schwab, MD,‡ Virginie Lafage, PhD,‡ Shay Bess, MD,§ Munish C. Gupta, MD,¶ Justin S. Smith, MD, PhD,† Vedat Deviren, MD,|| Behrooz Akbarnia, MD,** Greg M. Mundis, MD,** Michael O'Brien, MD,†† Richard Hostin, MD,†† Christopher Ames, MD,‡‡ and the International Spine Study Group

TABLE 4. Complication Data Between the Groups			
Complications	UT (n = 91)	LT (n = 107)	Р
Infection	6	3	0.22
Neurological	13	17	0.62
Cardiopulmonary	15	12	0.29
Vascular	0	0	N/A
Gastrointestinal	6	6	0.77
Operative	25	21	0.26
Renal	1	2	0.65
Wound	5	3	0.35
Radiographical	13	9	0.20
Mortality	$(\underline{1})$		0.32

Instrumenting to T3 vs T10

- Tends to:
 - Higher complication
 - Higher reoperation rate
 - Lower PJK risk

- Best indicated for
 - Thoracic pathology
 - TL kyphosis

Lower Instrumented vertebrae

- LIV should be
 - Stable
 - Neutral
 - At or below the lower end vertebra
 - Considerate of spinal stenosis/radiculopathy
- Avoiding ending at:
 - Listhesis
 - Rotated spinal segment
 - Region of kyphosis
 - At apex of deformity
 - Junctions (C7, T12)
 - Degenerated region

Mok & Hu Neuros clinic N Am 2007

Fractional Curves

Left leg radiculopathy- L4 & L5

What if L5-S1 is relatively intact?

Should lower fusion level end at L5 or S1?

Distal fusion level

- Long fusions stopping at L5 have inferior results
 - 69% had degeneration by 5 years
 - 67% with degeneration had positive sagittal imbalance
 - 19-29% required extension to pelvis
- Sacral/Pelvic fixation
 - Adds substantial OR time and blood loss
 - Increased stiffness
 - Higher risk of non-union
 - Gait changes
 - Better fractional curve control

Edwards et al Spine 2003 Kuhns et al. *Spine*. 2007 Swamy et al Neuros Clinic N Am 2007

Spinal Osteotomies

- Rigid deformities
- Output Decreases strain on bone-screw interface
- Improve overall spinal alignment

1) Smith-Petersen Osteotomy

2) Pedicle Subtraction Osteotomy

3) Vertebral Column Resection

54 F c BP, Deformity

- Pediatrician
- BMI: 50.5
- PMH: Hypothyroid
- NVI
- PI = 48°
- PT = 43°
- $LL = 48^{\circ}$ Kyph
- SVA = 18.5 cm
- Cobb = 80°
- C7-CSVL = 10.2 cm

Open Discs, Very Rigid

Options

PCO

● 3-column (PSO)

- Typically used in:
 - Scheuermann's Kyphosis
 - Junctional kyphosis
 - latrogenic flatback
 - Stiff adult lumbar scoliotic curves
- Gradual lordotic correction
- Increase spinal flexibility

- Posterior facet osteotomies
- Complete removal of ligamentum flavum
- Resection of fusion mass also possible

Smith-Petersen J Bone Joint Surg 1945

- Shortens the posterior column
- Hinges on the middle column
- Lengthens the anterior column
 - Potentially dangerous
- Mobile/generous discs ideal
- Rigid deformities = anterior release + SPOs (older technique)

- ~1°/mm = 5-10°/level
- Smooth correction

SPO Common Complications

- Significant bleeding with multiple levels
 - Gelfoam
- Neurologic deficit
 - Probe foramina post closure
 - Neuromonitoring
- Screw cut out
 - Cantilever Reduction

- Considerably safer than PSO
 - 47% less blood loss
 - 3.3% vs. 7.3% neurologic complications
- Similar correction of kyphosis
 - 61% kyphosis reduction
 - Similar fusion rates
 - 49% coronal cobb improvement

Cho KJ et al, Spine, 2005

- Inferior correction of sagittal imbalance
 - 5.5 vs. 11.2 cm
- Less focal correction

Pedicle Subtraction Osteotomy

- Typically used in:
 - Severe inflexibility
 - latrogenic flatback
 - Ankylosing spondylitis
 - Focal kyphotic deformity
 - Congenital Kyphosis
 - Large sagittal imbalance
- Strong sagittal balance correction
- Moderate coronal correction

Pedicle Subtraction Osteotomy

- 3-column osteotomy
- Posterior-only correction of fixed sagittal deformity
- Obviates need for anterior release
- Highly focal correction
- Ideal for previous circumferential fusion/AS

 Shortens the middle and posterior column

0

- Hinges on the anterior column
 - ~ 30° of focal sagittal correction at single segment (~20°/thoracic)
- Safer for certain conditions such as anklyosing sponylitis

Technique

- Laminectomy
- SPOs x 2
- Pedicle resection
 - Rongeur
 - Osteotomes
 - Burr
- Decancellate body
- Remove posterior cortex
- Closure

PSO Common Complications

- Neurologic deficit
 - Generous resection
 - Probe foramina post closure
 - Neuromonitoring
- Screw cut out
 - Construct to construct closure

PSO Common Complications

Pseudoarthrosis

- Interbody adjacent discs
- Accessory/Satellite rods

Pedicle Subtraction Osteotomy

- Significant correction of sagittal imbalance
 - 7.7-13.5 cm
 - Greatly superior to SPOs
- Significant coronal plane correction
 - 60% correction maintained at >2 years
 - Superior to SPOs

Bao H et al, Spine, 2015 Mar 1;40(5):E293-300 Kim YJ et al, Spine 2007. Sep 15;32(20):2189-97 Berven SH et al, Spine, 2001. Sep 15;26(18):2036-43

Pedicle Subtraction Osteotomy

Significant complication rate

- Motor deficits seen in 11.1%, permanent in 2.8%
- 34% Major complication rate
 - 3.3% permanent medical
 - 2.9% permanent surgical
- Complication did not preclude favorable outcome
- Functional outcome scores maintained at 5 years

Options

- PCO
 - Smooth correction
 - Lower complications

PSO

- Focal correction
- Better coronal/sagittal alignment
- Does not require anterior mobility

T5-Pelvis, L3 PS0

- $\odot \ \mathsf{PI} = 48^\circ \to 48^\circ$
- $PT = 43^{\circ} \rightarrow 23^{\circ}$
- $LL = 48^{\circ} \text{ Kyph} \rightarrow 38^{\circ} \text{ Lord}$
- SVA = 18.5 cm →
 4.4 cm
- Cobb = $80^{\circ} \rightarrow 32^{\circ}$
- C7-CSVL = 10.2 cm \rightarrow 6.2 cm

76 M

- Inability to maintain horizontal gaze, dysphagia, back pain
- 7 yrs s/p cervical, lumbar fusion
- 2 yrs s/p pso + revision
- 5/5 all ext
- T3-6: 60°
- C2-7 SVA: 8.4 cm

Vertebral Column Resection

- Typically used in:
 - Thoracic anomalies
 - Severe Proximal Junctional Failure
 - Tumor
 - Severe, inflexible deformities
 - Congenital deformities
 - Crankshaft
 - Large sagittal and coronal imbalances
- Strong sagittal balance correction
- Strong coronal correction

Vertebral Column Resection (VCR)

- Originally A/P (Bradford)
- Now Posterior-only (Lenke, Suk)
- No fixed-angle wedge for osteotomy closure
- Greater correction, typically 40°+
- For sharp, angular kyphosis (T_2-L_1)
- Typically with interbody

Costotransversectomy

Lami and Rod

VB Exposure

Access

Body Removal

Discectomy

Cage Insertion

Final Correction

Rib Bridge Graft

Rib Dissection/Removal

Bull-dog Clamps on Roots

Vertebral Body Resection

Removal of Post VB Wall

Initial Correction (~50-75%)

Cage Placement & Final Correction

Permanent Rod Placement

Onlay Rib Grafting

Vertebral Column Resection

- 61% Complication Rate
- 22% Intraoperative Neuromonitoring Changes
- 7-11% Major Neurologic Deficit
- Non-union less likely than PSO

Papadopoulous et al, *Spine J.* 2013 Smith JS et al, *Spine*, 2011

3mo s/p C3-T10 PSF, T4 VCR

- T3-6 = $60^{\circ} \rightarrow 22^{\circ}$
- C2-7 SVA = 8.4 cm \rightarrow 4.3 cm
- Greatly improved gaze

- Smooth deformity, thoracic/lumbar, mobile discs = SPOs
- Sharp deformity, ankylosed discs/posterior fusion = PSO
- Smooth lumbar kyphoscoliosis, major imbalance = PSO
- Sharp angular thoracic deformity = VCR

Case: 82 F c/o LBP

2 sx for L2 and T12 comp fx, 80 lbs, T = -2.5

ST. JOSEPH'S RI DOB: 8/30/7

R

800

Right

Medical Optimization

- Nutritionist referral
- Iaced on Forteo
- Returns 1 year later
 - Now 105 lbs (+25)
 - T-score up to -1.6 (up 0.9)

6 wks s/p T6-L4 PSF, VCR L1

5 yr post op standing

Thank you!

Michael S. Chang, MD Sonoran Spine Center Assistant Professor of Orthopaedic Surgery University of Arizona Associate Clinical Professor Mayo Clinic – Scottsdale Phoenix/Scottsdale, AZ

