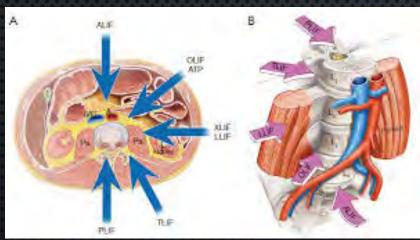
MIS DEFORMITY


FRED MO, MD

Associate Professor Georgetown University

DEPT OF ORTHOPAEDIC SURGERY

WHAT IS MIS?

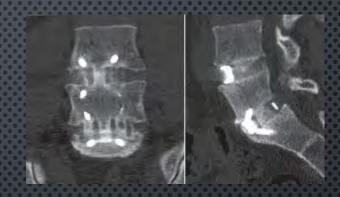


Figure 2. Photograph demonstrating minimally invasive spine surgery with percutaneous pedicle screw fixation.

- FOR OPEN SPINAL DEFORMITY CORRECTION
 - MAJOR COMPLICATION RATE OF 7.6%-50% HAS BEEN REPORTED
 - High blood loss
 - DEEP WOUND INFECTION REQUIRING REOPERATION 40-71%
- MINIMALLY INVASIVE SURGERY (MIS)
 - DECREASED BLOOD LOSS
 - EARLIER MOBILIZATION

Bisson et al. Neurosurg Focus 2017

Complications in adult spinal deformity surgery: an analysis of minimally invasive, hybrid, and open surgical techniques

Juan S. Uribe, M.D., Armen R. Deukmedjian, M.D., Praveen V. Mummaneni, M.D., Kai-Ming G. Fu, M.D., Gregory M. Mundis Jr., M.D., David O. Okonkwo, M.D., Ph.D., Adam S. Kanter, M.D., Robert Eastlack, M.D., Michael Y. Wang, M.D., Neel Anand, M.D., Richard G. Fessler, M.D., Frank La Marca, M.D., Paul Park, M.D., Virginie Lafage, Ph.D., Vedat Deviren, M.D., Shay Bess, M.D., And Christopher I. Shaffrey, M.D., On Behalf of the International Spine Study Group

Complications in spinal deformity surgery

TABLE 7: Complications among patients who underwent surgery for ASD*

Tarana e con	% of Patients				
Type of Complication	MIS	HYB	OPEN	Overall	Chi-Square
any complication	30.0	47.4	62.5	45.5	0.147
intraop complication	0.0	5.3	25.0	9.1	0.027
postop complication	30.0	47.4	50.0	41.8	0.401
major complication	30.0	47.4	62.5	45.5	0.147
minor complication	0.0	21.1	25.0	14.5	0.065
complication requiring surgery	15.0	15.8	18.8	16.4	0.952
DVT	0.0	15.8	0.0	5.5	0.049
PE	0.0	10.5	0.0	3.6	0.140
implant failure	10.0	5.3	6.3	7.3	0.836
neurological deficit	5.0	15.8	6.3	9.1	0.451
pneumonia	0.0	0.0	6.3	1.8	0.289
wound dehiscence	0.0	5.3	0.0	1.8	0.381
deep wound infection	0.0	0.0	0.0	0.0	1.000
proximal junctional kyphosis	5.0	10.5	6.3	7.3	0.788
other major complication	5.0	10.5	25.0	12.7	0.189

^{*} The MIS group had the smallest and the OPEN group had the greatest percentage of patients with any, intraoperative, postoperative, major, and minor complications. Boldface indicates significant values.

REVISITING the ANTERIOR COLUMN

- MIS TECHNIQUES CAN BE PERFORMED ALONE, OR IN CONCERT WITH, OPEN PROCEDURES
- CIRCUMFERENTIAL MIS
 C(MISS) ADDRESSES 360
 DEGREE DEFORMITY
 CORRECTION WITH
 ANTERIOR COLUMN SUPPORT

Park, S.W., Ko, M.J., Kim, Y.B. *et al.* Correction of marked sagittal deformity with circumferential minimally invasive surgery using oblique lateral interbody fusion in adult spinal deformity. *J Orthop Surg Res* **15**, 13 (2020)

The Prevalence of the Use of MIS Techniques in the Treatment of Adult Spinal Deformity (ASD) Amongst Members of the Scoliosis Research Society (SRS) in 2016.

Anand N¹, Agrawal A², Burger EL³, Ferrero E⁴, Fogelson JL⁵, Kaito T⁶, LaGrone MO⁷, Le Huec JC⁸, Lee JH⁹, Mudiyam R¹⁰, Sasao Y¹¹, Sembrano JN¹², Trobisch PD¹³, Yang SH¹⁴.

- ELECTRONIC SURVERY TO SRS MEMBERS
- 356 SURGEONS (61.3%) RESPONDED
- 157 (43.1%) REPORT MIS FOR TREATMENT OF ASD
- 67 (43.5%) STATED THAT MIS USAGE WAS 1-20% OF PRACTICE
- 11 (7.2%) UTILIZED MIS 81-100% OF THE TIME

Comparison of Complications and Clinical and Radiographic Outcomes Between Nonobese and Obese Patients with Adult Spinal Deformity Undergoing Minimally Invasive Surgery.

Park P¹, Wang MY², Nguyen S³, Mundis GM Jr³, La Marca F⁴, Uribe JS⁵, Anand N⁶, Okonkwo DO⁷, Kanter AS⁷, Fessler R⁸, Eastlack RK⁹, Chou D¹⁰, Deviren V¹¹, Nunley PD¹², Shaffrey CI¹³, Mummaneni PV¹⁰; International Spine Study Group.

- Mean BMI was 24.6 nonobese and 35.0 obese (P < 0.001)
- Postoperative lumbar lordosis-pelvic incidence mismatch averaged 17.9° obese and 9.9° nonobese (P = 0.028)
- NO DIFFERENCE IN POSTOPERATIVE ODI SCORES BETWEEN GROUPS (P = 0.090). SIMILARLY, BOTH GROUPS HAD DECREASED VAS SCORES FOR BACK AND LEG PAIN WITH NO DIFFERENCE BETWEEN GROUPS POSTOPERATIVELY.
- TWENTY (33.9%) NONOBESE PATIENTS VERSUS 7 (38.9%) OBESE PATIENTS HAD COMPLICATIONS (P = 0.452).

Comparison of radiographic results after minimally invasive, hybrid, and open surgery for adult spinal deformity: a multicenter study of 184 patients.

Haque RM¹, Mundis GM Jr, Ahmed Y, El Ahmadieh TY, Wang MY, Mummaneni PV, Uribe JS, Okonkwo DO, Eastlack RK, Anand N, Kanter AS, La Marca F, Akbarnia BA, Park P, Lafage V, Terran JS, Shaffrey CI, Klineberg E, Deviren V, Fessler RG; International Spine Study Group.

- 234 PATIENTS WITH ADULT
 SPINAL DEFORMITY
- MIS GROUP MAINTAINED A
 SIGNIFICANTLY SMALLER
 MEAN LUMBAR COBB ANGLE
 (13.1°) AFTER SURGERY
 COMPARED WITH THE OPEN
 GROUP (20.4°, P = 0.002

TABLE 5:	
Summary of surgical data	

Surgical Variable	MIS	Hybrid	Open	p Value	Post Hoc
mean EBL ± SD (ml)	507 ± 841	2003 ± 1192	2109 ± 1744 <0.001 (ANOVA)		MIS < hybrid, open
mean OR time ± SD (mín)	462 ± 177	710 ± 264	434 ± 147	<0.001 (ANOVA)	hybrid > MIS, open
transfusion %	23.8	63.6	85.3	<0.001 (chi-square)	
% major complications*	14	14	45	45 0.003 (chi-square) TABLE 5: Summary of surgical data	

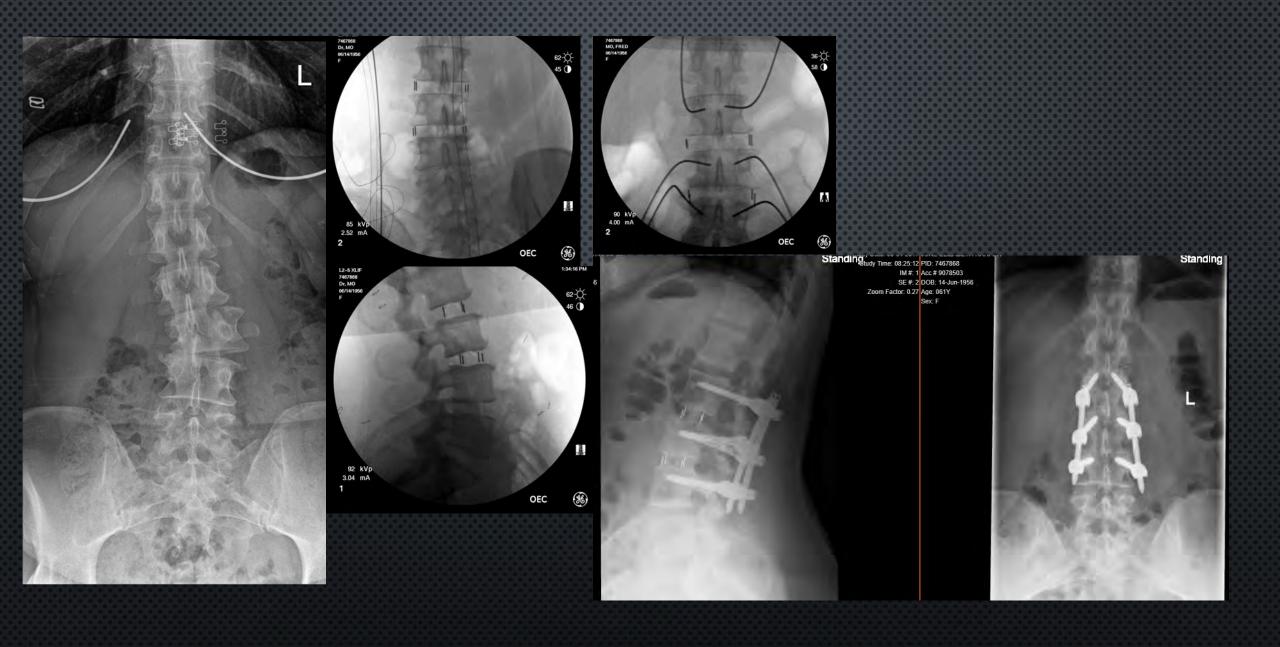
*Major complications are defined as:⁵ "Patient required reoperation, death, blindness, cardiac arrest, deep venous thrombosis, pulmonary embolism, implant failure, neurological deficit, pneumonia, sepsis, stroke, vascular injury, visceral injury, wound dehiscence, deep wound infection, hematoma formation with reoperation and proximal junctional kyphosis with reoperation." EBL = estimated blood loss; OR = operating room.

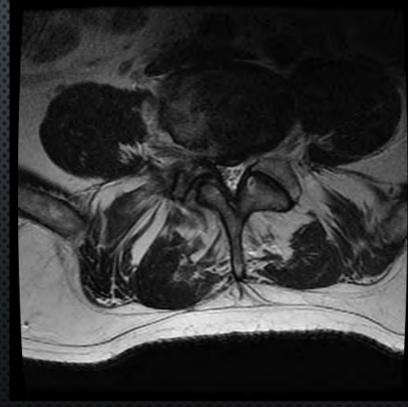
a reproducible rational framework for decision making in minimally invasive spinal deformity surgery PRAVEEN V. MUMMANENI, M.D., 1 CHRISTOPHER I. SHAFFREY, M.D., 2 LAWRENCE G. LENKE, M.D., 3 PAUL PARK, M.D., 4 MICHAEL Y. WANG, M.D., 5 Frank La Marca, M.D., Justin S. Smith, M.D., Gregory M. Mundis Jr., M.D., DAVID O. OKONKWO, M.D., Ph.D., BERTRAND MOAL, M.S.,8 RICHARD G. FESSLER, M.D., Ph.D., NEEL ANAND, M.D., 10 JUAN S. URIBE, M.D., 11 ADAM S. KANTER, M.D., BEHROOZ AKBARNIA, M.D., AND KAI-MING G. Fu, M.D., 12 ON BEHALF OF THE MINIMALLY INVASIVE SURGERY SECTION OF THE INTERNATIONAL SPINE STUDY SVA < 6 cm Flexible Curve PT < 25° LL-PI mismatch N LL-PI mismatch < 10° < 30° Thoracic kyphosis Lateral listhesis <6 mm < 60° Coronal Cobb < 20° LY CLASS II **CLASS III** CLASS I MIS surgery with decompression Open surgery with MIS surgery with and interbody fusion of apex of decompression only or fusion osteotomies +/- extension of the curve or the entire Coronal of a listhetic level. fusion to the thoracic spine. Cobb of the curve.

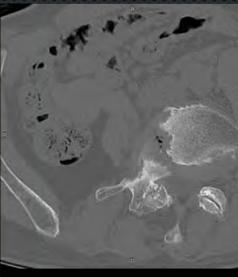
The minimally invasive spinal deformity surgery algorithm:

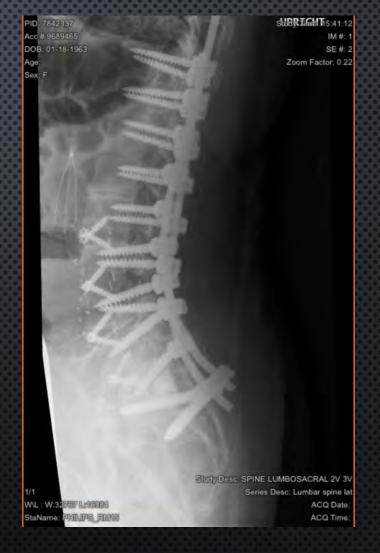
MISDEF CLASS II

MISDEF CLASS III


CASE JH







663/778 W/L: W:2500 L:250

PATIENT GP

THANK YOU