Full Endoscopic Postero-Lateral Lumbar Facet Sparing Interbody Fusion and Targeted Decompression for Foraminal Stenosis and Spondylolisthesis

James J. Yue, M.D. Frank H. Netter School of Medicine Quinnipiac University Department of Orthopaedic Surgery CT Orthopaedic Specialists

Disclosures

- 1. Elliquence, LLC
- 2. Aesculap Spine
- 3. Globus Spine
- 4. Alphatec Spine

Case

HPI: Patient is a 83 y.o. female who was presented with mild lower back pain and significant and left leg pain

PE: Wt 63.5kg, Ht 5'5", BMI 23.3kg/m2 Spine/Neurologic:

- Normal gait.
- Strength: grossly intact for BLE.
- Sensation: grossly intact for BLE.
- Bilateral ankle clonus (-).

Pre op X ray

Pre-op CT

Pre-op MRI

Case 2

- Prior Open Decompression and fusion
- Adjacent Level Spondylolisthesis
- BMI 42

MIS Indications and Limitations: Degenerative spinal stenosis

Classification

central

lateral (recess, foraminal)

- Symptoms: leg pain, paralysis, back pain
- Bony, capsular ligament structures
- Deficit in movement (walking)

algorithm lumbar stenosis

lateral stenosis

foraminal
• z-joint cyst

recess

central stenosis

leg symptoms

Advantages of Endo MIS Techniques:

- Same incision for all patients
- Muscle, blood supply preservation facet
- Leverage Indirect and Direct decompression
- Infection rates
- Preserve Facet Joint >>> Less destabilizing
- Access to multi focal areas of stenosis

Introduction: Evolution of Spinal Discectomy

Mixter WJ, Barr JS: Rupture of intervertebral disc with involvement of spinal canal. N Engl J M 1934; 211: 210f..

McCullough Micro-discectomy

William J. Mixter

Introduction: Evolution of Spinal Discectomy

MED Metrx

Full Endoscopic Surgery: Vertebris Scope

Working Channel Light Guide Optics Irrigation Channel

Current Technology Full Endoscopic Surgery

Working Channel
Light Guide
Optics
Irrigation Channel

Understand the Foramen: Upper zone and lower zone

Direct Targeted Discectomy/Decompression

Special Tools for Foraminal Decompression

Fits down the working channel of a 4.0 mm foraminoscope

Laser Straight and Side Firing

Articulating Burrs

Endo Ultrasonic Bone cutter

Big, Small, Narrow, Wide: Endoscopic Surgery The Neutralizer

Endoscopic Foraminoplasty, Discectomy, and Endplate Preparation

R

В

Solid Bullet Implant

ZEUS (Amendia OLLIF)

Omega Lift

INDIRECT DECOMPRESSION

Expandable implants

Opti-Cage, Interventional Spine/Depuy

Vari Lift: Wenzel Spine

Flarehawk

Rise Intra-LIF (Globus)

Mojave

Prolift

Holy Grail/Ultra MIS Surgery?: Spondylolisthesis/Foraminal Stenosis

Needle placement

- On AP View parallel disc space
 - Midline mark
 - Iliac crest mark
- Lateral view:
 - Mid disc line
 - Posterior facet line

Posterior Facet Line

Disc Space Preparation

Disc Cutter expands as a loop curette to deflect left, right, up and down for thorough discectomy.

Endplate Preparation with Expanding Instruments

Case

HPI: Patient is a 83 y.o. female who was presented with mild lower back pain and significant and left leg pain

PE: Wt 63.5kg, Ht 5'5", BMI 23.3kg/m2 Spine/Neurologic:

- Normal gait.
- Strength: grossly intact for BLE.
- Sensation: grossly intact for BLE.
- Bilateral ankle clonus (-).

Pre op X ray

Pre-op CT

Pre-op MRI

Post op X ray

X ray

834°PM

4 month Post OP

I year post op CT scan

June 2019

April 2018

Pt had unilateral pars defect on opposite side of screw placement

Endo Incision

Full-Endoscopic Interlaminar and Transforaminal Lumbar Discectomy Versus Conventional Microsurgical Technique

A Prospective, Randomized, Controlled Study

Sebastian Ruetten, MD, PhD,* Martin Komp, MD, PhD,* Harry Merk, MD,† and Georgios Godolias, MD‡

Full Percutaneous Transforaminal Lumbar Interbody Fusion Using the Facet-sparing, Trans-Kambin Approach

Christian Morgenstern, MD, PhD,* James J. Yue, MD, † and Rudolf Morgenstern, MD, PhD*

Journal Clinical Spine Surgery JE: 1.09, 2010		TABLE 2. Surgical Characteristics of the Operated Patients		
Journal Chinical Spine Surgery, ir.	1,30, 2019.		Overall (N = 51) [n (%)]	Р
TABLE 1. Demographics and Characteristics of the Operated Patients		Operated levels (interbody cages) L2/L3 L3/L4 8 (14)		
2	Overall $(N = 51) [n (\%)]$	L4/L5 L5/S1	34 (62)	
Age [mean (range)] (y) Female individuals Preoperative diagnosis* Degenerative disk disease Type of stenosis Foraminal stenosis Central stenosis	59.3 (26.1–82.4) 33 (65) 43 (84) 23 (45) 4 (8) 7 (14)	Total levels Total levels Number of levels operated with interbody of One level Two levels Anesthesia General anesthesia with neuromonitoring Local anesthesia with sedation Median estimated blood loss (mL) Anterior disk height (mm)	12 (22) 55 (100) ages (cases) 47 (92) 4 (8) 49 (96) 2 (4) 103.6	
Spondylolisthesis (Meyerding) Grade I Grade II	16 (31) 13 (25) 3 (6)	Preoperative (mean) Postoperative (mean) Posterior disk height (mm) Preoperative (mean)	9.64 13.21	0.018
*Multiple diagnoses per case may apply.		Postoperative (mean) Postoperative time until first walking [median (range)] (h) Time of hospital stay [median (range)] (h)	10.45 4.7 (3–23) 33.6 (25–77)	0.007

Endoscopic transforaminal lumbar interbody fusion without general anesthesia: operative and clinical outcomes in 100 consecutive patients with a minimum 1-year follow-up

John Paul G. Kolcun, BS,¹ G. Damian Brusko, BS,¹ Gregory W. Basil, MD,¹ Richard Epstein, MD,² and Michael Y. Wang, MD¹

Departments of ¹Neurological Surgery and ²Anesthesiology, University of Miami Miller School of Medicine, Miami, Florida

Most vulnerable for abdominal organ injury using extreme lateral approach

Thank You!

